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ABSTRACT 

Shiga toxin (stx) –producing Escherichia coli (STEC) are foodborne pathogens that have a 

significant impact on public health, with those possessing the attachment factor intimin (eae) 

referred to as enterohemorrhagic E. coli (EHEC) and associated with life threatening illnesses. 

Cattle and beef are considered typical sources of STEC, but their presence in pork products is a 

growing concern. Therefore, carcasses (n=1536) at two U.S. pork processors were sampled once 

per season at three stages of harvest (post-stunning skins; post-scald carcasses; chilled carcasses) 

then examined using PCR for stx and eae, aerobic plate count (APC) and Enterobacteriaceae 

counts (EBC). The prevalence of stx on skins, post-scald, and chilled carcasses was 85.3, 17.5, 

and 5.4%, respectively, with 82.3, 7.8, and 1.7% swabs, respectively, having stx and eae present. 

All stx positive samples were subjected to culture isolation that resulted in 368 STEC and 46 

EHEC isolates. The most frequently identified STEC were serogroups O121, O8, and O91 (63, 

6.7, and 6.0% of total STEC, respectively). The most frequently isolated EHEC was serotype 

O157:H7 (63% of total EHEC). Results showed that scalding significantly reduced (P<0.05) 

carcass APC and EBC by 3.00 and 2.50 log10 CFU/100cm2, respectively. A seasonal effect was 

observed with STEC prevalence lower (P˂0.05) in winter. The data from this study shows 

significant (P˂0.05) reduction in the incidence of STEC (stx) from 85.3% to 5.4% and of EHEC 

(stx+eae) from 82.3% to 1.7% within slaughter-to-chilling continuum, respectively, and that 

potential EHEC can be confirmed present throughout using culture isolation.  
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IMPORTANCE 

Seven serogroups of Shiga toxin-producing Escherichia coli(STEC) are responsible for most 

(>75%) cases of severe illnesses caused by STEC and are considered adulterants of beef. 

However, some STEC outbreaks have been attributed to pork products although the same E. coli 

are not considered adulterants in pork because little is known of their prevalence along the pork 

chain. The significance of the work presented here is that it identifies disease causing STEC, 

enterohemorrhagic E. coli (EHEC), demonstrating that these same organisms are a food safety 

hazard in pork as well as beef. The results show that most STEC isolated from pork are not likely 

to cause severe disease in humans and that processes used in pork harvest, such as scalding, offer 

a significant control point to reduce contamination. The results will assist the pork processing 

industry and regulatory agencies to optimize interventions to improve the safety of pork 

products. 

 

KEYWORDS: Shiga toxin-producing Escherichia coli, STEC, enterohemorrhagic E. coli, 

EHEC, pork carcasses, scalding, chilling, seasonal effect.  
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INTRODUCTION 

Shiga toxin-producing Escherichia coli (STEC) area potential food-borne pathogen that, 

after ingestion, can cause severe damage to the intestinal mucosa and, in some cases, other 

internal organs of the human host (1-3). Certain STEC possess adherence systems, the most 

commonly observed being the attaching and effacing (A/E) lesion of enteropathogenic E. coli 

which possess intimin (eae); or the fimbria of enteroaggregative E. coli.  By adhering to the 

intestinal lining and expressing Shiga toxin, these organisms can cause enterohemorrhagic 

diseases such as hemorrhagic colitis (HC) or the life-threatening condition of hemolytic uremic 

syndrome (HUS). There have been strains involved in HUS however, that lack either of 

these adherence mechanisms, thus there are other genes (not fully appreciated) that likely 

contribute to the virulence associated with severe foodborne illness caused by STEC.  In 

this study we distinguish enterohemorrhagic E. coli (EHEC) that contain eae from other 

STEC, because these strains are responsible for most (>75%) cases of severe illnesses caused 

by STEC (3). 

Since the early 1980s, E. coli O157:H7 has emerged as the EHEC serotype of the most 

significant public health relevance; not because of the incidence of the illness, which is much 

lower than that of other food-borne pathogens e.g. Campylobacter or Salmonella, but because of 

the severity of the symptoms, the low infectious dose, and potential sequelae. Although the 

major source of STEC and EHEC are healthy ruminants, predominantly cattle, the increasing 

trend of foodborne outbreaks associated with E. coli O157:H7 (O157-EHEC) and non-O157 

EHEC that were reported over recent years, both in the USA and EU, were attributed to the 

consumption of pork (4-6).  

In the USA, annual testing of meat and meat products by the U.S Department of 

Agriculture (USDA) Food Safety and Inspection Service (FSIS) is designed to allow regular 
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testing for product produced in domestic establishments, imported products, and raw ground beef 

in retail; the presence of O157-EHEC in samples of raw non-intact ground beef products and raw 

beef intended for raw non-intact products, including ground beef, raw ground beef components, 

and beef trimmings is carried out on a regular basis (7). The annual testing scheme also includes 

testing of raw pork meat for the presence of O157-EHEC, non-O157 EHEC and indicator 

microorganisms; 3800 samples of raw pork meat were tested in 2018, e.g. comminuted pork, 

intact pork cuts and non-intact pork cuts (7). In a recent report, of 1395 pork samples examined 

by FSIS for STEC, 309 (22%) screened positive for the presence of Shiga toxin genes (stx) and 

eae, but only 3 (0.2%) were confirmed by culture isolation (8). Unlike U.S. beef processors, U.S. 

pork processors do not conduct their own testing of products for E. coli O157:H7. At the moment 

in the EU, the only existing microbiological criterion for STEC in a food commodity is defined 

in Regulation (EC) No. 209/2013 amending Regulation (EC) No. 2073/2005 as regards 

microbiological criteria for sprouts (9). The monitoring data on STEC in foods other than sprouts 

and in animals, originate from the reporting obligations of the EU Member States (10), which 

stipulates that Member States must investigate the presence of STEC at the `most appropriate 

stage` of the food chain. Currently, Harmonized Epidemiological Indicators (HEI) at the EU 

level do not exist, allowing EU member states to carry out sampling, testing, data analysis and 

interpretation of results in a consistent manner.  

In addition, the epidemiology and virulence factors of STEC and EHEC carried by on-

farm pigs remain largely unknown. It is known that healthy pigs are important reservoirs of 

STEC (11) and some isolated strains were reported as potential human pathogens (12, 13). Since 

certain outbreaks of STEC and EHEC were associated with pork consumption (6, 14-17), it is 

important to obtain additional scientific evidence on pathways of pork contamination by 

serogroups able to infect humans (18).  
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Thus, the aims of this study were: a) to determine the seasonal prevalence of STEC and 

EHEC as well as Aerobic plate count (APC) bacteria and Enterobacteriaceae counts (EBC) on 

pork carcasses at three different steps of harvest; b) to further characterize isolated STEC and 

EHEC strains; and c) to discuss the results obtained with their relevance to food safety and to 

propose the most effective control options for prevention/minimization of pork carcass 

contamination. 

 

RESULTS 

APC and EBC. Differences in the levels of APC and EBC of pork carcasses along the 

processing line at three points were observed between plants A and B (Table 1). During 

slaughter, the APC were higher (6.50 log10CFU/100 cm2 in the plant A and 6.93 

log10CFU/100 cm2 in the plant B, respectively) on the carcass skin, while their numbers were 

significantly decreased (P<0.05) following the scalding process (3.91 log10CFU/100 cm2 in the 

plant A and 3.53 log10CFU/100 cm2 in the plant B, respectively) and following final 

interventions when measured on chilled carcasses (2.48 log10CFU/100 cm2 in the plant A and 

2.22 log10CFU/100 cm2 in the plant B, respectively). Carcass skin samples from plants A and B- 

had EBC of 4.41 and 4.37 log10CFU/100 cm2, respectively, while the carcasses showed 

significantly lower numbers of EBC after scalding (2.28 log10CFU/100 cm2- plant A and 1.50 

log10CFU/100 cm2- plant B), and again in the chiller (0.88 log10CFU/100 cm2- plant A and 0.49 

log10CFU/100 cm2- plant B) (P<0.05). 

Season significantly influenced (P<0.05) skin contamination. Significantly higher APC 

and EBC were measured on carcass surfaces during summer (7.85 and 5.01 log10 CFU/cm2, 

respectively) compared to all other seasons, followed by spring (6.79 and 4.51 log10 CFU/cm2) 

and winter (6.27 and 4.06 log10 CFU/cm2), while the lowest number of these bacteria were found 
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during fall (5.95 and 3.99 log10 CFU/cm2). Although scalding significantly decreased the number 

of these bacterial groups, seasonal variations remained significant (P<0.05). After all 

interventions, carcasses in the chiller had the lowest numbers of APC and EBC recorded during 

winter (1.92 and 0.49 log10 CFU/cm2, respectively) and spring (1.80 and 0.51 log10 CFU/cm2) 

with no significant differences (P>0.05) observed between these two seasons. 

PCR screening of pork carcasses for STEC (stx) and EHEC (stx+eae). All samples 

were enriched then screened by PCR for Shiga toxin (stx) and intimin (eae) genes. The presence 

of stx was considered to indicate the presence of STEC, while the concomitant presence of eae 

identified samples that potentially contained EHEC. Therefore, a sample that was PCR positive 

for stx and eae was included in both the potential STEC positive and the potential EHEC positive 

groups. In regard to STEC and EHEC screening of skins, post-scald pre-evisceration carcasses, 

and final carcasses, seasonal and plant differences were observed (Table 2). 

Overall, 85.3% of skin samples were positive for STEC, with Plant A having a lower rate 

(P<0.05) than Plant B. Seasonally, nearly 100% of skin samples were positive year-round for 

STEC except for the winter months when STEC prevalence was 41.7% (P< 0.05). During the 

winter, prevalence of STEC at Plant A was 26.0%, half that of Plant B (57.3%). This winter 

difference was responsible for all other differences observed on skins. 

Following scalding and singeing but before any further processing, 17.5% of the pre-

evisceration carcasses were STEC positive. Again, Plant A had a lower rate (13.8%) and was 

different (P<0.05) from Plant B (21.2%). The seasonal effect observed on these carcasses was 

different however, from that of the incoming skins. While winter month skins screened lower for 

STEC, spring post-scald carcasses (11.2%) were lower (P<0.05) than the other seasons (19-

20%). The lowest post-scald carcass STEC screen rate was observed at Plant A in the spring 

(8.3%) while the highest was observed at Plant B in the winter (28.1%). Just 5.4% of the final 
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carcasses in the chillers at Plants A and B combined positive for STEC, with Plant A having 

approximately a three-fold greater STEC prevalence (P<0.05) than Plant B. Seasonally, summer 

final carcasses possessed the greatest number of STEC positives (7.6%), with the lowest 

(P<0.05) number of STEC positives in the spring (3.4%). However, rates in the winter and fall, 

3.6% and 7.0%, respectively, were not different (P>0.05) than the summer and spring levels, 

respectively. The seasonally observed rates of STEC positive final carcasses at Plant A ranged 

from 5.2 to 13.0% while at Plant B they ranged from 1.6 to 4.7%. 

Since potential EHEC positive samples represent a subset of all STEC positive samples, 

the prevalence of potential EHEC on skins and the carcasses was lower, however the plant and 

seasonal differences were generally maintained. Pork skins that screened positive for both stx 

and eae were 82.3%, Plant A (76.3%) and Plant B (88.3%) being different (P<0.05); and winter 

skins (29.7%) less (P<0.05) than the other seasons (99.5-100%). Nearly all skin samples were 

positive for both markers indicating presence of potential EHEC except in the winter where only 

6.3% of Plant A and 53.1% of Plant B skin samples screened positive for potential EHEC.  

Of all post-scald carcasses, 7.8% were positive for potential EHEC with no difference 

observed (P>0.05) between the two plants (7.7 and 7.9%). There was a seasonal effect that 

followed the STEC screening with spring lower (2.9%; P<0.05) than the three other seasons 

which were not different (P>0.05) from one another ranging from 8.3 to 10.4% of samples 

positive for potential EHEC. 

The EHEC prevalence for final carcasses was very low at only 1.7%, but with significant 

differences (P<0.05) between Plant A at 3.1% and Plant B at 0.3%. No final carcasses were 

positive for EHEC in the spring months, whereas 3.4% of final carcasses did so in the summer 

months. This was the only seasonal effect observed amongst final carcasses. In a season-by-plant 

analysis, in Plant B only 1.0% of final carcasses were positive for EHEC in the summer, whereas 
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1.6% were EHEC-positive in Plant A during the winter, which was less than the summer rate of 

5.7% and significantly less (P<0.05) than the fall rate (5.2%). 

Isolation of STEC and EHEC from pork processing samples. The presence of an 

EHEC exclusive of a STEC could only be confirmed by culture isolation, as the samples could 

have been co-contaminated by a STEC strain (possessing an stx gene) and an atypical 

enteropathogenic E. coli (EPEC strain; possessing an eae gene). Therefore, all stx-positive 

samples were subjected to culture confirmation. In total, 405 samples were culture confirmed. 

Three hundred sixty (360) of the samples yielded 368 different STEC isolates (Table 3) while 46 

samples yielded 46 EHEC isolates (Table 4). One sample was culture confirmed to harbor both 

STEC and EHEC isolates. Most isolates were found in samples collected in the spring and 

summer months, 120 and 135, respectively. Whereas, only 67 winter samples and 92 fall samples 

were culture confirmed. O121 was the most common STEC serotype on skin and post-scald 

carcasses and O157 was the most common EHEC serotype. 

 

As suggested by the PCR screening results, samples collected from skins yielded the 

most STEC and EHEC isolates (Tables 3 and 4). Plant B had about twice as many skin samples 

culture confirmed with a STEC (n=240) compared to Plant A (n=109), but both plants had 

similar number of skin samples culture confirmed an EHEC (25and 21for Plants A and B, 

respectively). Samples collected in the spring, and winter months only yielded 4 and 1 as EHEC, 

respectively, with the bulk of the isolated EHEC being found in the summer and fall (Table 4). 

Nearly two-thirds (64.4%) of the STEC isolated from skins were STEC O121. STEC 

with non-typeable serogroups were second most common (10.5%). These two groups of STEC 

were the only ones found at both plants every season. Other STEC identified at both plants 

and/or in during every season were STEC O8, O91, O139, and O20 (Table 3). The most common 
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EHEC isolated from skins was EHEC O157:H7, which made up 63.0% of the EHEC isolates 

from skins. EHEC O157:H7 was found at Plant Bin the summer and both plants in the fall. The 

next most common EHEC isolated from skin samples was EHEC O121. It too was isolated in a 

similar pattern as that of EHEC O157:H7. Other EHEC isolated from skins were O8, O26, O103 

and O-non-typeable (Table 4). 

For post-scald pre-evisceration carcasses, 17.5% were PCR positive for STEC and 

culture confirmed at a rate of 0.9%, while 1.7% were PCR positive for EHEC but only 0.1% 

were culture confirmed to carry EHEC. All isolates from post-scald carcasses were only 

recovered from samples collected in the summer and fall months. These were the seasons with 

some of the highest PCR positive rates. A third fewer STEC were found at Plant A in the 

summer than at Plant B. However, STEC O8 and STEC O121 were present at both plants in the 

summer. Similar numbers of STEC isolates were found at each plant in the fall, again with STEC 

O121 being most common. One EHEC was isolated from the post-scald carcasses at each plant 

in the fall. These isolates were an EHEC O157:H7 at Plant B and an EHEC ONT at Plant A.  

Final carcasses also only had 5 STEC isolated, STEC O121, O139, and 3 ONT recovered 

from Plant A during the summer. Only 2 EHEC O26 were culture confirmed from final 

carcasses, similarly from Plant A during the summer. No isolates were recovered from final 

carcasses at Plant B, nor during any other season. The recovery of isolates agrees with the PCR 

screening results being highest for Plant Ain the summer at 13.0 and 5.7% for STEC and 

potential EHEC, respectively. 

Characterization of STEC isolates. Of the 367 STEC isolated, 6 were recovered from 

post-scald carcasses and 1 from a final carcass, while the remaining 360 isolates were found on 

pre-scald carcass skins. STEC O121 made up 63% of the isolates (Table S1). Eighteen variations 

were observed based on the presence of the different virulence factors examined. Seven of the 
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genotypes were unique isolates, whereas multiple isolates of similar genotypes numbered in 

groups of 2 to 163. In the case of 6 genotypes the identical isolates were found across plants and 

seasons. However, one genotype represented by 163 isolates was recovered from skin samples at 

Plant A during the spring. All but 7 of the STEC O121 isolates (6 from skin, 1 from post-scald 

carcass) possessed Shiga toxin 2 subtype e (stx2e). Two isolates carried an stx1a allele in addition 

to the stx2e allele. Only 5 STEC O121 possessed what appeared to be incomplete pO157 

plasmids. All five carried katP, while two also possessed etpD, with one of those also having 

espP. Most of the STEC O121 carried an allele of eastA, and a small number also possessed iron 

acquisition genes. Two STEC O121 possessed the adherence factor saa, these were found at 

Plant B in the fall and Plant A in the winter. 

The remaining STEC isolates (n=134) were of 15 serogroups and a large group (n=41) of 

non-identified serogroups (this due to our limited serotyping anti-sera). The identified serogroups 

included O2, O5, O8, O20, O32, O55, O74, O86, O91, O103 (an intimin lacking STEC), O110, 

O112, O139, O141, and O146. These STEC non-O121 isolates (Tables S2 and S3) also 

predominantly had stx2e. Shiga toxin subtype 1a (stx1a) was the lone Shiga toxin in 21 isolates of 

serogroups O20, O32, O91, O110, O112, and ONT. Shiga toxin subtypes 2a (stx2a) and 2c (stx2c) 

were uncommon, observed in only 2 isolates, a STEC O8 and a STEC ONT, respectively. Six 

isolates had stx2of non-identifiable subtypes. In most cases stx occurred as a single allele except 

for a STEC O8 possessing stx2e and stx2a, a STEC O32 with stx1a and stx2x, and STEC ONTs 

that possessed combinations of stx1a with stx2x, stx2c with stx2x, and stx1a with stx2e.  

Incomplete variations of the pO157 plasmid were observed in multiple isolates. Eight 

STEC O91 isolates possessed the pO157 markers hlyA and katP, and these were the two most 

common of the pO157 markers identified in the STEC isolates (30 had katP and 11 had hlyA). 

One STEC O8 isolate had three pO157 markers present (katP, espP, and etpD) and represented 
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the most complete pO157 plasmid within the non-O121 STEC isolates. In regard to other 

virulence factors, 2 isolates possessed cytotoxic necrotizing factor (cnf), a STEC O8 and a STEC 

O86. Multiple strains had alleles of eastA, while iron acquisition genes iha and chuA were 

observed in isolates of STEC O8, O20, O55, O86, O91, and O139. Fourteen of the STEC ONT 

lacked these additional factors, while the rest possessed 2 or more of them. 

Characterization of EHEC isolates. The EHEC isolates were divided into E. coli 

O157:H7 (n=29;Table S4) and non-O157 EHEC (n=17; Table S5). The 29 E. coli O157:H7 

isolates, when compared for Shiga toxin types, nle effectors, composition of the pO157 plasmid, 

and other toxin, adherence, and iron utilization genes, all impacting virulence, resulted in 12 

different genotypes (Table S4). 

Twelve of the 29 E. coli O157:H7 isolates possessed identical gene patterns and were 

found across seasons and between the two plants. All the E. coli O157:H7 possessed stx1 and 

stx2a, but 3 isolates also carried the stx2e allele. All E. coli O157:H7 isolates appeared to possess 

an intact pO157 plasmid as evidenced by the presence of the hylA, katP, espP and etpD genes 

which are spaced around the plasmid. The iron utilization genes chuA and iha were also present 

in all of the E. coli O157:H7 isolates. The primary differences between the E. coli O157:H7 

strains involved differences in the presence of the nle genes nleA, nleG2-3, and nleG9 as well as 

cytotoxic necrotizing factor (present in 3) and E. coli heat stable enterotoxin 1. 

Non-O157 EHEC (n=17) were of 4 identifiable serogroups (O8, O26, O103 and O121) 

with 5 isolates having a non-typeable serogroup (Table S5). The non-O157 EHEC divided into 

fifteen groups based on genetic composition. These EHEC isolates possessed different 

complements of Shiga toxin alleles, stx1a, stx2a, stx2c and stx2e. Three of the most frequent non-

O157 STEC serogroups recognized by the CDC (1) and FSIS (19) were identified (O26, O103 

and O121), each possessing the expected eae subtypes of β1 and ε, however 2 of the EHEC 
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O121 isolates had an eae gene that could not be subtyped using our primer sets suggesting that it 

may be something other than eae-ε. Intimin-γ was observed in one of the EHEC ONT. This 

isolate maybe an EHEC O145 that lacks the chromosomal region our serogrouping PCR 

identifies. This strain did not appear to have rfbO157, or flicH7 by PCR and was a sorbitol 

fermenter (data not shown) suggesting it is not likely E. coli O157:H7. 

Variable numbers of nle genes were observed in the EHEC isolates with EHEC O8 and 2 

of the EHEC ONT possessing only 1 to 3 of the effectors (Table S5). The 2 EHEC O103 lacked 

many of the nle genes in comparison to the EHEC O26s. Two of the EHEC O121 and one of the 

EHEC ONT possessed nearly all of the nle genes. Intact and partial pO157 plasmids were 

identified in the non-O157 EHEC. An EHEC O26, 4 O121, and an ONT all appeared to possess 

a complete plasmid, while other isolates had incomplete versions. One EHEC ONT lacked all 

markers for the pO157 plasmid. In regard to other factors, the lifA gene was only present in one 

EHEC O26 found at Plant Aduring the summer. Cytotoxic necrotizing factor, and E. coli heat 

stable enterotoxin, and iron acquisition factors (iha and chuA) were variably present in all but 

four of the non-O157 EHEC isolated from pork carcasses. 

 

DISCUSSION 

The present study identified STEC and potential EHEC on the skins of pre-scald pork 

carcasses in two U.S. commercial hog processing plants. Contamination of pigs with pathogenic 

EHEC O157 and non-O157 may have occurred at farms (feed, water, manure), during transport, 

or lairage. Available data shows that some EHEC O157 strains may persist for more than two 

years in the farm environment (20). In addition, the tonsils of some pigs have been reported to be 

colonized by significant levels of E. coli O157:H7 (21). The significantly higher (P˂0.05) STEC 

and EHEC prevalence on pre-scald carcasses sampled at Plant B could be due to higher 
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contamination at any of the steps prior to slaughter, or potentially the “all in-all out” method of 

pork production where each farm empties a full facility for slaughter. However, determination of 

the source of this contamination was not the aim of the present study. 

The results obtained in our study showed a very high prevalence of the stx gene(s) 

indicating STEC (85.3%) and the stx and eae genes indicating EHEC (82.3%) on the skin of pigs 

at slaughter. Nevertheless, a significant decrease in prevalence of these genetic markers was 

observed after scalding in the present study. Other authors reported the effectiveness of the 

scalding stage on reducing of E. coli and coliform counts on pork carcasses (22, 23). This 

important step is usually a Critical Control Point within a risk-based food safety management 

system (Hazard Analysis and Critical Control Points/HACCP) and reduces both bacterial 

numbers and the prevalence of pathogens (22). 

APC bacteria are generally used to assess the hygiene of meat processing (24) and EBC 

are also used as indicators of fecal contamination (25, 26). The results of the present study 

showed that scalding is effective in reducing bacterial contamination on the carcass. 

Furthermore, our results are in the line with previous reports showing that scalding (59-62 °C) of 

pork carcasses resulted in reduction of APC (22, 27,28). In other experiments scalding reduced 

APC and EBC by 3.1–3.8, and 1.7–3.3 log10 CFU cm−2, respectively (22, 27) which is similar to 

results found here (up to 3.4 log10 CFU 100cm−2 and 2.87 log10 CFU 100cm−2). 

Unfortunately, epidemiological data on STEC prevalence in different regions and studies 

are not always comparable due to differences in study designs, sampling, and methods applied 

for detection and isolation, as well as season in which the study was performed (11, 18, 29). In 

Italy, Ercoli et al. (11), reported a STEC prevalence of 13.8% on pork carcasses before chilling, 

while in Belgium the prevalence of this pathogen was 12.8% on carcasses after cutting, and 

before chilling (30). In the present study the prevalence of STEC after scalding ranged between 
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13.8% (Plant A) and 21.2% (Plant B). Moreover, the data from the present study also showed a 

significant (P˂0.05) reduction in the incidence of STEC, indicated by stx gene(s), from 85.3% to 

5.4% and of EHEC, indicated by stx and eae genes, from 82.3% to 1.7% within slaughter-to-

chilling continuum, respectively. Colello et al. (29) found that 4.08% of pork carcasses sampled 

were stx positive in a study carried out in Argentina. A similar prevalence of STEC as in the 

present study (5.4%) was also found in carcasses after cooling in a Canadian study (4.8%) (31). 

Since the complete elimination of carcass surface bacteria is not possible, chilling as a 

Standard Operating Procedure has the objective, in general, to reduce carcass surface 

temperature thereby preventing and slowing microorganism growth (32, 33). In the present 

experiment, significant differences (P˂0.05) in carcass APC and EBC after chilling were 

observed between the two plants. These findings may be attributed to differences in chilling 

systems used by the plants. Although the incoming microorganism load on skins was higher at 

the beginning of harvest, at the end a lower level of APC and EBC and lower incidence of STEC 

was found in Plant B (2.22 and 0.49 log10 CFU/100cm2, 0.3%, respectively) where blast chilling 

was used, compared to conventional chilling in Plant A (2.48 and 0.88 log10 CFU/100cm2, 3.1%, 

respectively). Blast-chilling in comparison with conventional chilling lowers the carcass 

temperature at a rapid rate resulting in the arrest of bacterial growth when the population is 

smaller. In addition, blast chilling may provoke cold shock, especially in particularly sensitive 

Gram-negative microorganisms including E. coli and other Enterobacteriaceae species. 

Whereas, with conventional chilling, microorganisms may have the opportunity to adapt to lower 

temperatures and avoid cold shock (34). However, the final carcasses that were sampled were not 

linked to the post-scald carcasses, and were in fact from hogs harvested the previous days. The 

average reduction of APC from post-scald to final carcasses was not different (P> 0.05) between 

the two plants, while the reduction of EBC between these two points was significantly greater 
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(P< 0.05) at Plant A (data not shown). Therefore, the significantly different microbial counts 

observed on carcasses in the chiller was likely a combination of the interventions applied as 

carcasses entered the chiller and the chilling process itself. 

A lactic acid treatment following the final carcass water wash was applied as carcasses 

entered the chiller. It is well known that the combination of water and lactic acid treatment 

provide the greatest microbial reduction without large negative effects on quality attributes of 

pork meat (35, 36). As mentioned, in the present study carcasses in both plants were treated with 

2% lactic acid (ambient temperature water, 10-30 s), before the cooling step. If the initial counts 

are higher, as in the present study, the effect of lactic acid decontamination treatment is more 

evident (36). Ba et al. (37) observed that significantly higher reductions in all bacterial species 

on pork carcasses were achieved when sprayed with 4% lactic acid. Kalchayanand et al. (38) 

reported a significant decrease of STEC O26, O45, O103, O111, O121, O145, O157 in 

inoculated fresh beef after lactic acid treatment. 

Results regarding seasonal effect observed in the present study should be interpreted with 

caution because the visits to the plants were only carried out on two consecutive days during 

each period. It was observed that there were significant increases (P˂0.05) in APC and EBC 

during the summer and spring compared to winter and fall. However, STEC prevalence indicated 

by stx genes on the skin of pigs at harvest was high (99-100%) and did not differ between spring, 

summer and fall (P>0.05). Only during winter was there a significantly lower prevalence 

(P˂0.05) of this pathogen indicator (stx) compared to other seasons. Essendoubi et al. (26) also 

found a higher prevalence of STEC on beef carcasses during warmer months (from June to 

November), while Dawson et al. (39) reported higher E. coli O157:H7 colonization in cattle 

during warmer months compared to cooler times of the year in various cattle production systems. 

One possible explanation may be that animals are dirtier during summer months due to soil and 
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fecal contamination (33, 40,41). In contrast, Cha et al. (42) reported higher STEC prevalence in 

pigs during fall and winter months (36.16% and 19.72%, respectively) suggesting that low 

temperatures may contribute to increased stress in pigs leading to lower immunity and increased 

susceptibility to new STEC infections. The seasonal variations observed require further 

investigation as in the U.S. pigs are finished indoors in temperature-controlled facilities and not 

directly exposed to colder temperatures in winter. 

EHEC are important pathogens of public health significance because these isolates 

possess not only stx1 and/or the stx2 but also eae, the gene for the adherence factor intimin. 

Intimin, an integral outer membrane protein, is required for adherence to enterocytes inducing a 

characteristic histopathological A/E lesion and has been considered as a risk factor for disease in 

humans (29, 43). Although the presence of the eae gene is an aggravating factor, this virulence 

factor is not always essential for severe illness suggesting that there may be alternative 

mechanisms for attachment (3). One such additional adherence factor we observed in a small 

number of STEC was saa, the STEC autoagglutinating adhesin. The saa gene had been identified 

in STEC isolated from humans with HUS or diarrhea (44). 

The strains that possess stx1 and stx2 genes are often associated with HUS (45, 46). In the 

present study the strains possessing stx2 accounted for 88.74% of the total STEC isolates and 

59.58% of all isolates (data not shown). While most stx2 genes were subtype 2e, there were 

isolates the possessed stx2a and stx2c, both major subtypes produced by E. coli strains associated 

with HUS (46). Strains that have stx2e do not consistently provoke foodborne illness in humans 

(47), but other data has confirmed the isolation of stx2e-associated STEC from a HUS patient 

(48). With the exception of 8 STEC O121 that had an unidentified stx2 subtype, the remaining 

STEC O121 only possessed stx2e. STEC containing subtype stx2e are typical swine-adapted 

STEC and present the most frequently reported Shiga toxin subtype from pigs (42, 49). This 

 on N
ovem

ber 6, 2020 at A
U

T
 U

N
IV

 LIB
http://aem

.asm
.org/

D
ow

nloaded from
 

http://aem.asm.org/


18 
 

subtype is responsible for porcine edema disease in pigs (47) and consequently economic losses 

in production (13,29). The significance of the unidentified stx2 subtypes (as well as eae 

subtypes) upon the virulence of the isolates is unknown.  We used previously validated 

subtyping PCRs (64) however, alternate approaches utilizing whole genome sequencing (WGS) 

could likely resolve this issue and is an avenue for future work. 

EHEC serogroups isolated in the present study included O26 (3), O103 (2), O121 (5), and 

O157 (29). The USDA FSIS has declared the so called “big six” non-O157 serogroups (O26, 

O45, O103, O111, O121, O145) as adulterants in beef (19). These serotypes present a public 

health burden because they are linked to a significant number of HC and HUS cases (1,50, 51). 

The European Food Safety Authority (3) has made a similar declaration for serogroups with a 

high pathogenicity potential (O157, O26, O103, O145, O111, O145). Therefore, in the present 

study the STEC serogroups of public health importance that were isolated were O157 and O103 

(3) and O157, O26, O103, O121 (19).  Our approach to STEC and EHEC isolation did not use 

immunomagnetic separation (IMS) which could have concentrated these select serogroups and 

potentially increased their isolation rate.  We avoided this method in favor of direct plating to 

washed sheep blood agar containing mitomycin (wSBAm), a STEC and EHEC indicator medium 

that allowed us to focus on isolation of all possible STEC and identify the relative abundance of 

EHEC amongst the STEC. 

Most of the EHEC isolates found in the present study were O157:H7 (29) and were 

isolated from both plants during summer and fall. Serotype O157:H7 causes the most severe 

clinical symptoms in humans. Although pork is not a common vehicle of EHEC O157, some 

outbreaks in U.S., Canada (15-17, 52), and Italy (53) have been linked to consumption of roasted 

pork meat and salami containing pork. Serogroup O121 was the most prevalent non-O157 

serotype found among pork carcasses. STEC O121 was previously linked with many outbreaks 
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(4).  Before the advent of WGS a common tool used for tracking E. coli O157:H7 and the non-

O157 STEC had been pulse field gel electrophoresis (PFGE).  Using PFGE may have allowed us 

to identify strains with similar restriction digest patterns (RDPs), while using WGS analysis 

would allow identification of related strains based on single nucleotide polymorphisms.  Further 

investigation of all the EHEC isolated in the current study using WGS is warranted. 

The potential of other strains isolated in our study to cause illness in humans should not 

be excluded. Serotypes O8 (1 EHEC and 25 STEC containing samples), O91 (22 STEC 

containing samples), O139 (15 STEC containing samples), O20 (9 STEC containing samples) 

and O55 (7 STEC containing samples) were recovered. E. coli O8  possessing stx2ehas been 

reported to cause acute diarrhea (54), while O91 STEC strains can cause HUS or HC although 

they are eae-negative (55). In addition, O8, and O91 were included in the 20 most frequent 

serogroups reported in confirmed cases of human STEC infections in EU/EEA, 2015-2017 (3).  

The results of the present study, observed with sampling only in two plants in the central 

part of the U.S. showed that pigs carry a variety of different STEC and EHEC serotypes, some of 

those serotypes are of high public health importance (e.g. O157 and O121), cross-contamination 

can occur during processing and dressing and interventions applied before chilling have an 

important role in reduction of microbial loads (APC, EBC) and prevalence of STEC and EHEC. 

The presence of different STEC and EHEC serogroups on market pigs in this study was 

found in decreasing order (O157, O121, O8, O91, O139, O20 and O55), indicating that this 

could be the way of introducing them into the processing plant environment. Results showed that 

pork skin may be a significant source of EHEC and STEC in pork meat. The highest APC and 

EBC levels on pork skins were found during spring and summer, while the prevalence of genetic 

markers indicating the presence of STEC and EHEC were significantly less during winter. 

Hygienic processing at both plants significantly reduced contamination on carcasses, regardless 
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of season. Post-scald carcasses showed that STEC prevalence (indicated by the presence of stx 

gene) was significantly decreased by 80-90% which makes this processing step key to 

contaminant reduction. Important control measures included decontamination of pork carcasses 

with 2% lactic acid applied before chilling. Since the results from present study showed a higher 

prevalence of STEC and EHEC during spring, summer and fall compared to winter, a risk-based 

food safety management system should be implemented during these three seasons to achieve 

beneficial effect in reducing the pathogen prevalence on pork carcasses. Further in depth studies 

are needed to understand the sources of STEC and EHEC carried by pigs presented for harvest, 

cross-contamination of pork carcasses in the processing plant, and the impact of blast chilling on 

arresting the growth of bacterial contaminants on pork carcasses. 

 

MATERIALS AND METHODS 

Meat establishments. Sample collection was conducted in two establishments (Plant A and 

Plant B) approved for export of pork meat and deli-meat products to foreign markets by the 

USDA Food Safety and Inspection Service (FSIS). The selected meat establishments were two 

large US commercial hog processing plants that harvested 11000-17000 hogs/day. The harvest 

process and dressing operations followed standard procedures of: stunning, exsanguination, pre-

scalding wash, scalding at 60°C, dehairing, singeing, polishing, pre-evisceration wash, 

evisceration, carcass splitting, trimming, final wash, and chilling (final carcass and cooler 

temperature was 4°C/16-24 h; Fig. 1). Plants A and B had different chilling systems, 

conventional and a blast chilling system, respectively. 

Sample collection. The sampling protocol targeted the incoming contaminants on skins, 

then examined carcasses at two relevant locations: post-scald pre-intervention carcasses and 
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finished carcasses after chilling. Thereby, identifying along the harvest line where pork carcasses 

may have been cross contaminated with microbes, including STEC and EHEC (Fig. 1).  

The sampling was carried out quarterly, throughout the year, covering four seasons, e.g. 

Q I - winter (December–February), Q II – spring (March–May), Q III - summer (Jun–August) 

and Q IV – fall (September–November). Each plant (designated Plant A and Plant B) was visited 

once per season and carcass samples were collected over two consecutive days on each trip, 

totaling eight sampling days per plant/per year, for a total of 16 sampling days/per year for two 

plants. On each sampling day, 95 samples were taken from three sampling points along the 

harvest line: skin of stunned exsanguinated pre-scald carcass, post-scald pre-evisceration carcass, 

and chilled final carcass. In total, 1536 samples were collected over the course of the study, 384 

samples in each season (winter thru fall). 

Samples were collected as described previously (using moistened cellulose sponges 

(Whirl Pak; Nasco, Fort Atkinson, WI), prewetted with 20 mL of buffered peptone water (BPW; 

Difco, Becton Dickinson, Franklin Lakes, NJ) (56). To prevent cross contamination, gloves were 

worn during sampling and were changed following each sample. 

Samples from the skin of pre-scald carcass surfaces were obtained by using both sides of 

the pre-wetted sponge to swab an area of approximately 1,500 cm2 along the belly midline. After 

scalding, singeing, and polishing of the carcass, pre-evisceration post-scald carcass samples were 

obtained by using both sides of the pre-wetted sponge to swab approximately 4000 cm2 of the 

carcass surface along the midline from ham to sternum, including fore shank and jowl. Final 

carcass samples were obtained from carcasses that had been chilled at least overnight in coolers 

at 4°C, by using both sides of the sponge to swab approximately 4000 cm2 of the carcass surface 

along the split midline from ham collar to jowl and fore shank. Due to the intense processing 

speed, in-plant operations and safety considerations for personnel collecting the samples, only a 
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convenience sample was collected, therefore samples taken from each point were not matched to 

specific animals or groups of animals at other points. Skin and post-scald carcass samples were 

collected at the same time, while final carcass samples were collected after 24h of chilling, from 

carcasses harvested on the previous day. All samples were transported in coolers with ice packs 

(at <4°C), received, and processed at the U.S. Meat Animal Research Center (Clay Center, NE, 

USA) within 24 h of collection, according to the protocol described by Schmidt et al. (56). The 

levels of APC (57) as hygiene level indicators, EBC (58) as indicators of fecal contamination, 

and STEC non-O157 as foodborne pathogen (59) were determined. 

Sample processing. Each sponge swab was massaged by hand to ensure it was 

thoroughly mixed, then 1mL was removed for APC and EBC. Eighty milliliters of tryptic soy 

broth (TSB; Difco, BD) was added to the remainder of the sample and sponge to enrich the 

samples for STEC. Enrichment consisted of incubation in a programmable incubator at 25°C for 

2 h, 42°C for 6 h, then held at 4°C until processed. After enrichment, two 1 mL portions of each 

sample were removed for STEC screening and analysis, with one of the portions archived as a 

frozen (-70°C) 30% glycerol stock. 

Screening for Shiga toxin genes. One hundred microliters of an enrichment were placed 

in a microcentrifuge tube and used to prepare a crude DNA boil prep lysis (60). Two microliters 

of the DNA preparation were placed into separate 25 µL multiplex PCR reactions that detected 

stx1, stx2, eae, and ehx and was performed as previously described (61). Products of the PCR 

amplifications were separated by agarose gel electrophoresis, stained using ethidium bromide, 

and then photographed and interpreted for the presence of the four possible reaction products. 

Enrichments that had stx1 and/or stx2 were considered positive for STEC, while enrichments that 

had eae and stx1 and/or stx2 were considered positive for EHEC for use in prevalence 

calculations.  

 on N
ovem

ber 6, 2020 at A
U

T
 U

N
IV

 LIB
http://aem

.asm
.org/

D
ow

nloaded from
 

http://aem.asm.org/


23 
 

Isolation of STEC and EHEC. The sample enrichments determined by PCR to contain 

stx1 and/or stx2 were assayed by spiral plating of samples onto plates of washed sheep blood agar 

containing mitomycin (wSBAm) (62). Each enrichment was serially diluted to 1:500 and 1:5000 

in cold (4°C) buffered peptone water (BPW). Fifty microliters of each dilution were spiral plated, 

on to wSBAm plates. The plates were incubated overnight at 37°C and then viewed on a white-

light box for the suspect enterohemolytic phenotype as a thin zone (≤ 1 mm) surrounding the 

colony (63). In addition, if other hemolytic phenotypes such as alpha, beta, or gamma hemolysis 

were present, additional colonies representative of each hemolytic phenotype were picked for 

screening. A minimum of 4 colonies (if colonies were present) and a maximum of 6 colonies per 

sample were picked and placed into individual wells of 96-well screening plates containing 100 

µL TSB per well. After suspect colonies were picked, the wSBAm plates were placed at 4°C. 

The 96-well screening plate was incubated at 37°C overnight, then screened by PCR as described 

above. If at least one suspect colony from a sample did not contain stx1 and/or stx2, the wSBAm 

plates were removed from 4°C and subjected to another round of suspect colony picking. All stx-

containing isolates were checked for purity by streaking for isolation on sorbitol MacConkey 

agar containing 5-bromo-4-chloro-3-indolyl-#-D-glucuronide (SMAC-BCIG; Oxoid-CM0981; 

Remel Inc., Lenexa, KS) then transferred to tryptic soy agar (TSA; Difco, BD) plates for 

characterization.  

Characterization of isolates. All stx-containing isolates (STEC) and stx- and eae- 

containing isolates (EHEC) were confirmed to be E. coli by biochemical assays using Fluorocult 

LMX broth (Merck KGaA, Darmstadt, Germany) and API 20E strips (bioMerieux Inc., 

Hazelwood MO), both used according to the recommendations of the manufacturers. Once an 

isolate was established as being a STEC or EHEC, its serotype was determined by molecular and 

serologic identification of the O serogroup. PCR was used for molecular identification of O 
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groups O26, O45, O55, O103, O111, O113, O117, O121, O126, O145, and O146 as described 

previously (64). E. coli antisera (Cedarlane, Burlington, NC) were used to confirm the PCR 

results and identify other O serogroups. Virulence genes of each STEC or EHEC isolate were 

determined by PCR as described previously (64). Shiga toxin subtypes of the isolates were 

identified to be stx1a, stx1c, stx2a, stx2c, stx2d, and stx2e. If an stx subtype could not be identified 

the isolate was simply identified as “stx1” or “stx2”. Intimin (eae) subtypes: α1, α2, β1, β2, γ, δ, 

ε, θ, and ζ were identified by PCR as described previously (64) and if an eae subtype could not 

be identified for an isolate, it was referred to as ‘eae’. The presence of four genes associated with 

the large 60-MDa virulence plasmid, toxB, espP, katP, and etpD; additional toxin-encoding 

genes (subA, lifA, cnf, and astA); adherence-encoding genes (iha and saa); and hemolysin genes 

(hylA and chuA), were identified amongst the isolates by PCR as described previously (64). 

Lastly, genes described for molecular risk assessment associated with E. coli O157:H7 O-islands 

36, 57, 71, and 122 (nleB, nleE, entG2-3, G5-2, and G6-2, nleC, H1-1, nleB2, nleG, nleG9, nleF, 

H1-2, nleA, and G2-1 were identified by PCR as described previously (64). 

Statistical analysis. Results from the enumeration (APC and Enterobacteriaceae count) 

of bacterial groups were analyzed for each sample type (skin, post-scald carcass, and final 

carcass) using analysis of variance with the GLM procedures of SAS. The model included main 

effects of season and plant. For significant main effects (P ≤ 0.05), least squares means 

separation was carried out with the PDIFF option (a pairwise t test). The data for enumerations 

were log transformed before the analysis of variance. Pairwise comparisons of frequencies were 

made using the PROC FREQ and Mantel-Haenszel chi-square analysis of SAS. 

Sample enrichments were sorted according to serotype and screening PCR positive 

reaction pattern (stx1, stx2, and eae) and comparisons of prevalence were examined using a one-

way analysis of variance (ANOVA) and the Bonferroni multiple-comparison posttest. 
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Comparisons of median values of the data sets were made using the Kruskal-Wallis test for 

nonparametric data and Dunn’s multiple- comparison posttest. For data sets with only two 

groups of values, comparisons were made using either a two-tailed unpaired t-test or the Mann-

Whitney U test for nonparametric data. For cases when pair-wise differences were made, the 

DIFFER procedure of PEPI software (USD, Inc., Stone Mountain, GA) was used. In all cases 

significance being defined at a P value of ≤ 0.05. 
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FIGURE 1. Pork slaughter line: standard operational procedures (SOPs) and sampling sites. 
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TABLE 1. Aerobic Plate Counts (APC) and Enterobacteriaceae counts (EBC)aon pork carcasses 

by sample site, processing plant, and season. 

aValuesrepresent the mean Log10 CFU/100cm2 (n=768 by Plant and n=384 by Season), those 

followed by the same letter within the column for plant or season are not different (P>0.05). 

bSeasons: Winter = December-February, Spring = March-May, Summer = June-August, Fall = 

September-November. 

cSkin of stunned exsanguinated pigs sampled along belly midline. 

dPost-scald pre-evisceration pig carcasses sampled along midline from ham to breast, including 

fore shank and jowl. Carcasssamples are not matched to other samples. 

eFinal = chilled finished pig carcasses, sampled along the split midline from ham collar to jowl 

and fore shank. Carcass samples are not matched to other samples.

    APC (Log10CFU/100cm2)   EBC (Log10CFU/100cm2) 

Season Plant Skinc Post-scaldd Finale   Skin Post-scald Final 

- A 6.50b 3.91a 2.48a  4.41a 2.28a 0.88a 

 B 6.93a 3.53b 2.22b  4.37a 1.50b 0.49b 

         

Winter - 6.27y 3.28x 1.92y  4.06y 1.66y 0.49y 

Spring - 6.79x 2.85z 1.80y  4.51x 1.85x 0.51y 

Summer - 7.85w 5.59w 3.15w  5.01w 2.56w 1.02w 

Fall - 5.95z 3.05y 2.53x  3.99z 1.77xy 0.73x 

 on N
ovem

ber 6, 2020 at A
U

T
 U

N
IV

 LIB
http://aem

.asm
.org/

D
ow

nloaded from
 

http://aem.asm.org/


TABLE 2. Prevalencea of STECb and EHECc in samples collected from pork processing as determined by PCRd. 

 

 

 

 

 

 

 

 

 

 

 

 

aValues represent percentages of each sample type in each category found positive. 

bSTEC are Shiga toxin-producing E. coliindicated by the presenceofstx1 and or stx2 gene(s) in the sample. 

cEHEC are enterohemorrhagicE. coliindicated by the presenceofShiga toxin (stx) and intimin (eae) genes in the sample. 

dThe screening PCR identified stx1, stx2, and eae genes in the enriched samples. 

eSeasons: Winter = December-February, Spring = March-May, Summer = June-August, Fall = September-November. 

fSkin of stunned exsanguinated pigs sampled along belly midline. 

      STEC Positive  EHEC Positive 

Seasone Plant n Skinf Post-scaldg Finalh  Skin Post-scald Final 

- - 1536 85.3 17.5 5.4  82.3 7.8 1.7 
          

- A 768 81.3yf 13.8y 8.2x  76.3y 7.7x 3.1x 

- B 768 89.3x 21.2x 2.6y  88.3x 7.9x 0.3y 
          

Winter - 384 41.7r 20.3q 3.6qr  29.7r 9.6q 0.8qr 

Spring - 384 100.0q 11.2r 3.4r  100.0q 2.9r 0.0r 

Summer - 384 99.5q 19.0q 7.6q  99.5q 8.3q 3.4q 

Fall - 384 100.0q 19.5q 7.0qr  100.0q 10.4q 2.6qr 
          

Winter 
A 192 26.0c 12.5gf 5.2ih  6.3de 7.8cde 1.6gfh 

B 192 57.3b 28.1c 2.1i  53.1b 11.5c 0.0h 

Spring 
A 192 100.0a 8.3gh 5.2ih  100.0a 4.2efg 0.0h 

B 192 100.0a 14.1gef 1.6i  100.0a 1.6fgh 0.0h 

Summer 
A 192 99.0a 18.2def 13.0gf  99.0a 8.3cd 5.7de 

B 192 100.0a 19.8de 2.1i  100.0a 8.3cd 1.0gh 

Fall 
A 192 100.0a 16.2ef 9.4gh  100.0a 10.4c 5.2dfe 

B 192 100.0a 22.9dc 4.7ih  100.0a 10.4c 0.0h 
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gPost-scaldpre-evisceration pig carcasses sampled along midline from ham to breast, including fore shank and jowl. Carcass samples 

are not matched to other samples. 

hFinal = chilled finished pig carcasses, sampled along the split midline from ham collar to jowl and fore shank. Samples are not 

matched to other samples. 

fValues within a group, STEC or EHEC, Plant (columns), Season (columns), or Plant x Season (columns and rows) followed by the 

same letter are not different (P>0.05).
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TABLE 3. Summarya of STECbstrains (n=368) isolated from pork processing plants by sample type, seasonc, and processing plant. 

aValues represent the number of isolates recovered from samples within each category. 

bSTEC are Shiga toxin-producing E. colilacking intimin (eae) gene. 

cSeasons: Winter = December-February, Spring = March-May, Summer = June-August, Fall = September-November. 

dSkin of stunned exsanguinated pigs sampled along belly midline. 

   STEC Serogroup 
 Season Plant O2 O5 O8 O20 O32 O55 O74 O86 O91 O103 O110 O112 O121 O139 O141 O146 ONTg 

Skind                    

 
Winter 

A 1  15 7       1  15 1   2 
 B     1    10    1 4  1 4 
 

Spring 
A   1         1 26    5 

 B   4   7   5    50 5 2  13 
 

Summer 
A   1 1   1  3    17 1   1 

 B  1 1 1     3 1   68   2 7 
 

Fall  
A    1         6  1  1 

 B   1          42 3   3 

Post-scald carcasse                  

 
Summer 

A   1          1     

 B   1     1     1    3 
 

Fall  
A        1     2     

 B         1    2     

Final Carcassf                   

 
Summer 

A             1 1   3 
 B                  

Total  1 1 25 10 1 7 1 2 22 1 1 1 232 15 3 3 42 
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ePost-scald pre-evisceration pig carcasses sampled along midline from ham to breast, including fore shank and jowl. Carcasses are not 

matched to other samples. 

fFinal = chilled finished pig carcasses, along the split midline from ham collar to jowl and fore shank. Carcasses are not matched to 

other samples. 

gONT=serogroup was not typable using limited antisera sets available.
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TABLE 4. Summarya of EHECb(n=46) isolated from pork processing plants by seasonc, and 

processing plant. 

  EHEC serogroup 

Season Plant O8 O26 O103 O121 O157 ONTd 

Winter 
A   2    

B      2 

Spring 
A      1 

B       

Summer 
A  2e     

B    2 8 1 

Fall 
A 1   3 15 1e 

B  1  1 6e  

 Total 1 3 2 6 29 5 

 

aValues represent number of EHEC isolates of the given serogroup recovered from samples that 

screened positive for Shiga toxin genes by PCR. 

bEHEC are enterohemorrhagicE. coli possessing Shiga toxin (stx) and intimin (eae) genes. 

cSeasons: Winter = December-February, Spring = March-May, Summer = June-August, Fall = 

September-November. 

dONT = serogroup was not typable using limited antisera sets available. 

eAll isolates were recovered from Pork Skin swab samples except the 2 EHEC O26 (Plant A, 

Summer) that were recovered from final pork carcasses; 1 EHEC ONT (Plant A, Fall) recovered 

from a pre-intervention carcass; and 1 EHEC O157 (Plant B, Fall) recovered from a pre-

intervention carcass.  
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