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Highlights  

 

Hypothyroidism accelerated formation of primordial follicles 

 

Primordial follicle oocytes  shows the significant alterations of sER  

 

Primordial follicle oocyte had increased amount of mitochondria with altered 

morphology 

 

Advanced follicle maturation increases apoptotic and proliferating markers 
expression 

 

Abstract 

 

Thyroid hormones (TH) are one of the key factors for normal prenatal development in 

mammals. Previously, we showed that subclinical maternal hypothyroidism leads to premature 

atresia of ovarian follicles in female rat offspring in the pre-pubertal and pubertal periods. The 

influence of decreased concentration of TH on primordial follicles pool formation during neonatal 

and early infantile period of rat pups was not investigated previously. Maternal hypothyroidism 

during pregnancy has irreversible negative influence on primordial follicles pool formation and 

population of resting oocytes in female rat offspring. The study was done on neonatal and early 

infantile control (n-10) and hypothyroid (n-10) female rat pups derived from control (n-6) and 

propylthiouracil (PTU) treated pregnant dams (n-6), respectively. Ovaries of all pups were 

removed and processed for light and transmission electron microscopy (TEM). Number of nests, 

oogonia and oocytes per nest, primordial, primary, secondary and preantral follicles were 

determined. Screening for overall calcium presence in ovarian tissue was done using Alizarin red 
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staining. Morphology and volume density of nucleus, mitochondria and smooth endoplasmic 

reticulum (sER) in the oocytes in primordial follicles was also assessed. Caspase-3 and terminal 

deoxynucleotidyl transferase dUTP nick end labelling (TUNEL), both markers for apoptosis, and 

proliferating cell nuclear antigen (PCNA) for proliferation were determined in oocytes and 

granulosa cells in different type of follicles. In neonatal period, ovaries of hypothyroid pups had a 

decreased number of oogonia, oocytes and nests, an increased number of primordial follicles and 

a decreased number of primary and secondary follicles, while in early infantile period, increased 

number of primary, secondary and preantral follicles were found. Alizarin red staining was intense 

in hypothyroid neonatal rats that also had the highest content of dilated sER. Number of 

mitochondria with altered morphology in both groups of hypothyroid pups was increased. 

Apoptosis markers have not shown significant difference between groups but PCNA had an 

increased expression in the oocytes and granulosa cells in primordial follicles of hypothyroid rats. 

Light and electron microscopy analysis indicate that previously detected premature ovarian 

follicular atresia in pre-pubertal and pubertal hypothyroid rats is preceded with premature 

formation of primordial follicles followed by slight changes on sER and mitochondria in examined 

oocytes, and increased expression of PCNA.  

 

Keywords: Hypothyroidism; primordial follicle; PCNA; Caspase-3; TUNEL; oocyte 

ultrastructure; 

 

1. Introduction 

Hypothyroidism induces alterations of ovarian function. It is known that transient 

hypothyroidism in immature rats induces polycystic ovary-like syndrome (Bagavandoss et al., 

1998), atrophy and underweight of ovaries in adult rats (Ortega et al., 1990) and atresia of follicles 

(Meng et al. 2016) while even subclinical hypothyroidism in women induces infertility (Abalovich 

et al 2007). In developed countries, the prevalence of subclinical hypothyroidism in child-bearing 

age may be as high as 5% (review: Gharib et al., 2005). Although it is recognised that hypothyroid 

woman could have full-term carriage, foetal development may be abnormal (De Groota et. al., 

2012). The most important consequence of hypothyroidism during pregnancy is irreversible 

suboptimal brain development of the child as thyroid hormones (TH) are necessary for early 

neuronal development (Haddow et al., 1999). We hypothesised the same should be true for fertile 
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oocyte formation in female child. The argument behind this hypothesis relies on a fact that the 

pool of oocyte precursors, i.e. resting oocytes in primordial follicles, is formed during prenatal 

development in humans (Fulton et. al 2005). Thus, hypothetically, the oocytes in female child of 

pregnant hypothyroid women, could acquire irreversible changes during prenatal development, 

that could be visible only in the moment when they start to be activated, i.e. in pre-pubertal or 

pubertal period. Previously, using propylthiouracil (PTU) treated pregnant and lactating dams as 

a model for maternal hypothyroidism, we were able to show that their female offspring had an 

early activation of follicles followed by their atresia in late infantile, pre-pubertal and pubertal 

period (Radovanović et al., 2012). Reduction in the number of follicles and corpora lutea, and 

hyperplasia and hypertrophy of stromal interstitial cells also implied premature ovarian failure in 

the ovaries of pubertal rats (Radovanović et al., 2012).  

TH act on nuclear and membrane receptors regulating overall metabolic pathways and cell 

proliferation and differentiation in peripheral tissues, but they also orchestrate body functions 

acting through central nervous system (Lopez et al., 2013). Depending on tissue and cell type, as 

well as severity and duration of hypothyroidism, cell cycle could be activated or inhibited and 

apoptogenic signals could be induced (Holsberger et al., 2013; Alisi et al., 2005). Previous works 

on developing rat ovaries showed that neonatal hypothyroidism alters differentiation, but not 

proliferation of granulosa cells (Djikstra et al., 1996). Increased apoptosis of granulosa cells, 

without oocyte alteration in pre-pubertal rats was detected when postnatal hypothyroidism was 

induced (Chan and Ng, 1995). Although several papers describe the effect of hypothyroidism on 

folliculogenesis, no data exists for the neonatal and early infantile period of rat pup development 

i.e., the most important period for resting oocytes pool formation and subsequent reproductive 

potential.  

Apart from acting to nuclear receptors, TH act directly on several organelles. TH action 

upon mitochondria function is well described, while their action upon endoplasmic reticulum (ER) 

is still not explored. Most of the data demonstrating TH effect on mitochondria were retrieved 

from experiments on rat hepatocytes and different type of muscle cells in vivo, or isolated cells 

and organs (review: Harper and Seifert, 2008). Namely, decreased TH concentration is connected 

with lower numbers of mitochondria per cell and decreased ATP regeneration, basal proton leak, 

and oxygen consumption (review: Harper and Seifert, 2008). In hypothyroidism, mitochondrial 

membranes are more fluid due to altered fatty acyl composition (Brookes et al, 1998), probably 
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influencing their morphology. Alteration and interdependence of mitochondrial morphology and 

function have been shown in different metabolic disorders: diabetic cardiomyopathy on 

cardiomyocytes and in non-alcoholic fatty liver disease on hepatocytes (review: Galloway and 

Yoon, 2012). Of importance, it was shown that hypothyroidism also altered mitochondrial 

morphology and led to the release of apoptogenic proteins during rat cerebellar development 

(Singh et al., 2003). Although mitochondria are essential for oocytes metabolism in resting 

primordial follicles (review: Sutton-McDowell et al., 2010), no data about their morphology in 

hypothyroid animals exists.  

TH binding protein (p55) and deiodinases located on endoplasmic reticulum (ER) are 

important regulators of TH biological activity (Cheng et al, 1987, Köhrle, 1995). ER is involved 

in biosynthesis of proteins, phospholipids and cholesterol and degradation of glycogen. 

Orchestrated action of ER and mitochondria is important for Ca++ homeostasis and apoptosis (for 

review see: Bauman & Waltz, 2001; Berridge, 2002). It is interesting that TH regulate Ca++-

ATPases pumps on cell membranes and endoplasmic reticulum via non-genomic mechanisms 

(Incerpi et al, 2008). The influence of decreased concentration of TH on ER is not known, but one 

could speculate that lack of TH would alter Ca++ flow from ER and alter different signalling 

cascades ultimately leading to apoptosis.  

Using a model of maternal hypothyroidism in rats to mimic hypothyroid state of a pregnant 

woman, we tested the effect of TH deficiency on ovarian development in the neonatal and early 

infantile periods of female rats. The aims of the present study were 1) to investigate if premature 

follicular atresia seen in the juvenile and pubertal periods is preceded with alteration in primordial 

follicles assembly and their activation into primary follicles, 2) to examine subcellular changes in 

primordial follicles, emphasising mitochondria and ER as organelles important for TH non-

genomic action and 3) to examine if hypothyroidism alters proliferation of granulosa cells and 

apoptosis of granulosa cells and oocytes. 

 

2. Materials and Methods 

 

2.1. Animals and experimental protocol 
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Female Albino Oxford rats aged 3 months were housed in the animal facility under 

standard laboratory conditions with a cycle of 12h light: 12h darkness and food and water intake 

ad libitum. After mating, the presence of sperm in the vaginal smears was considered as gestational 

day 0.  

Dams were randomised into two groups, each consisting of six animals. Treated mothers 

were given 1.5 mg/L 6-n-propyl-2-thyouracil (PTU) (Sigma Chemical Co. St. Louis, MO, USA) 

in drinking water from the beginning of pregnancy and during lactation. Controls consumed tap 

water without PTU. Five neonatal (four-day-old) and five early infantile (seven-day-old) female 

pups from treated mothers and another ten matched by age from control mothers were euthanized 

using a prolonged deep anaesthesia and their body weights were recorded. Blood sampling was 

carried out during the anaesthesia protocol. Concentration of triiodothyronine (T3) and thyroxine 

(T4) was determined using radioimmunoassay kits (INEP, Zemun, Serbia). The experiment was 

approved by the Ethical Committee of the Faculty of Veterinary Medicine University of Belgrade, 

according to the guidelines issued by the EU registered Serbian Laboratory Animal Science 

Association implementing the European Communities Council Directive (2010/63/EEC) and the 

rules for good laboratory practice established by EU and OECD. All experimental procedures were 

performed under the supervision of a licensed veterinarian, who specialised in the conduction of 

experiments on laboratory animals. All researchers and technicians who were part of the 

experiment are authorised to perform experiments in laboratory animals.  

 

2.2. Tissue processing and sampling for light microscopy (histochemistry and stereology) 

  

The ovaries and thyroid glands were removed and fixed in 10% neutral-buffered formalin 

(pH 6.8) 24 hours at room temperature. To ensure uniform sagittal sections, dehydrated ovaries 

were embedded in paraffin with the longest axis face down. As ovaries contained oogonia, and 

oocytes in different stages of first meiotic prophase, it was estimated that the best way to analyse 

them is the previously established method for tissues with high cell variability. Namely, each fifth 

section (5 µm thick) was used for morphometry analysis (Bucci et.al., 1997, Tilly, 2003, Picut et. 

al., 2015). The approximate number of sections per ovary was between 20 and 25. Number of nests 

in ovarian cortex and average number of oogonia/oocytes per nest were assessed in follicles and 

the number of primordial, primary, secondary and preantral follicles (modified according to 
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Mazaud et al, 2002) was given as a number of follicles per section. Primordial follicle is defined 

as an oocyte partially or completely surrounded with flattened granulosa cells, primary follicle as 

an oocyte with one layer of cuboidal granulosa cells or at least one cuboidal cell among flattened 

granulosa cells, secondary follicle as an oocyte with two layers and more of cuboidal granulosa 

cells or one layer and at least one cell of second layer and preantral as an oocyte surrounded with 

more than two layers of granulosa cells and Call-Exner bodies between them (see supplementary 

data 1). Although, it was recently published that using optical disector could be an accurate method 

for quantification of oocytes with visible nucleoli in pubertal and adult ovaries (Charleston et al, 

2007; Bordbar et al, 2014), rare nucleoli and oogonia/oocytes variability in developing rat ovaries 

made disector analysis less desirable in conditions described in this experiment. 

 

2.3. Alizarin red staining for Ca++ detection 

 

 Staining for Ca++ was performed in Alizarin Red Solution (C.I. 58005, 2 gm in 100 ml of 

distilled water). The pH was adjusted to 4.1–4.3 with 10% ammonium hydroxide. Slides were held 

in dye for 1 minute. Dehydration proceeded in acetone (100%) for 20 dips, then in Acetone-Xylene 

(1:1) solution for 20 dips. Slides were cleared in xylene and mounted in a DPX mounting media. 

 

2.4. Hypothyroidism determination 

 

To determine hypothyroidism, thyroid gland stereology and activation index value was 

assessed. Thyroid gland was analysed using a multipurpose stereological grid M42 (The M42 

testing system had 21 straight-line segments and 42 testing points in a testing area equal to 36.36 

d2). The volume density of different thyroid compartments was determined by using model - based 

stereology (Weibel, 1979). First, volume density (Vv) of interstitium (Vvi), epithelial tissue (Vve) 

and colloid (Vvc) were determined. Using stereological analyses, the activation index (Ia) of 

thyroid gland was calculated by means of the following formula:  

 

Ia = Vve / Vvc 

 

2.5. Tissue processing for electron microscopy 
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Ovaries were fixed in 4% glutaraldehyde for 24 hours (pH 7.2), rinsed in the Milloning 

buffer three times and post-fixed in 1% osmium tetroxide (OsO4, pH 7.2) for 1 h. After 

dehydration in a graded series of acetone, the tissue was embedded in araldite. Semi-thin sections 

were stained with Toluidine blue and used to select areas of interest. Ultra-thin sections of selected 

areas were obtained using Leica UC6 ultramicrotome (Leica Microsystems, Wetzlar, Germany), 

mounted on copper grids and contrasted in uranyl acetate and lead citrate using Leica EM STAIN 

(Leica Microsystems). Sections were examined on a Philips CM12 transmission electron 

microscope (Philips/FEI, Eindhoven,Netherlands) equipped with the digital camera SIS 

MegaView III (Olympus Soft Imaging Solutions, Münster, Germany). 

 

2.6. TEM stereology 

 

Stereology-based quantitative characterisation of cytoplasm and cellular compartments 

(mitochondria, smooth endoplasmic reticulum - sER, Golgi complex and nucleus) of oocytes of 

primordial follicles was performed on TEM photographs using a Adobe Photoshop CS6 Software. 

The stereological analysis was performed only on the oocytes with the nuclear mid-section, at a 

low (× 3000) magnification. Random test points were assigned on microphotographs and volume 

density of examined cytoplasm and cellular compartments were given according to formula Vv = 

Pc/Ptotal, where Pc is the number of points on a certain cell portion (cytoplasm, organelle) and Ptotal 

is a number of points in the frame (Weibel et al, 1966).  

 

2.7. Mitochondria number and area determination 

 

To determine fraction of each mitochondrial type in total mitochondrial number per oocyte 

section and area of each type of mitochondria (M1, M2 and M3, described below in section 

Results), randomly selected primordial follicles from electron micrographs, taken at magnification 

x 3000, were used. All mitochondria in the cytoplasm of selected oocytes were analysed, with no 

less than 100 mitochondria of each type. 

 

2.8. Immunohistochemistry 
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Paraffin embedded tissue sections were used to determine the PCNA (proliferating cell 

nuclear antigen) (sc-7907) (Santa Cruz, Biotech, USA), cleaved caspase-3 (Asp 175) (Cell 

Signaling Technology, USA) and terminal deoxynucleotidyl transferase dUTP nick end labelling 

(TUNEL) (FragEL DNA fragmentation Detection kit with colorimetric TdT enzyme (QIA33, 

Merck) localisation. For all others, except TUNEL, the following procedure was performed: slides 

were microwaved in citrate-buffer 0.1M (pH 6) for antigen retrieval. After cooling at room 

temperature and washing twice in phosphate-buffered saline (PBS), blocking of endogenous 

peroxidase was performed with Peroxidase Block System for 10 minutes. Then, tissue was washed 

in PBS and blocked with Protein Block for 5 minutes (Novocastra Peroxidase Detection System, 

Leica, UK). Slides were washed two times in PBS and incubated with anti-PCNA (1:100) and anti-

caspase-3 antibody (1:100), diluted in 5% Normal Goat Serum, overnight at 4ºC. On the negative 

controls, primary antibody was not used. After washing, slides were incubated at room temperature 

with secondary antibody (30 minutes), with streptavidin-HRP (30 minutes) and then washed. 

Reaction was developed with 3-3’-diaminobenzidine (DAB) (Novocastra Peroxidase Detection 

System, Leica, UK). Counterstaining was carried out with Mayer’s haematoxylin and slides were 

mounted with DPX. For TUNEL detection, we followed manufacture’s protocol (Merck Millipore, 

Darmstadt, Germany).  

PCNA, caspase-3 and TUNEL staining index of ovarian follicles was calculated according 

to the formula previously used by Moggadham-Dorafshani et al., (2013): 

A × B × 100 / C × D 

A=number of follicles with positive cells; B=number of positive cells in each follicle; C=total 

number of follicles; D=total number of cells in each follicle 

To obtain data indicating caspase-3 and TUNEL expression in the oocytes, only follicles 

with positive cells were counted, i.e., follicles from previous formula that were labelled with A. 

Staining intensity was reported as negative (-), weak (+), moderate (++) and strong (+++) positive.  

To obtain data indicating PCNA expression in the primordial follicles oocytes, the number 

of positive oocytes was expressed as a percentage of total number of oocytes.  

 

Histological and morphometric analyses were done using microscope Olympus CX43 with 

Olympus Digital Camera C7070. 
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2.9. Statistical analysis  

 

Counting and all stereological analyses were performed by two independent researchers 

who observed all slides two times for morphological and stereology analysis and three times for 

immunohistochemical evaluations. All values above and below the confidence interval (5-95%) 

were considered irrelevant and excluded from further processing of results. 

Stereology, morphometry and semi-quantitative analysis results are expressed as mean± 

standard error. Student’s t-test was used to determine statistical differences between groups. Levels 

of significance were: * p<0.05; **p<0.01; ***p<0.001. 
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3. Results 

 

3.1. Treated neonatal and early infantile rats had decreased body mass and were hypothyroid  

 

Neonatal hypothyroid pups had, on average, 24% lower body mass compared to the 

controls. The difference in body weight between pups in two groups was less evident in the early 

infantile period and was, on average, 16% (see supplementary data 2).  

Thyroid glands in neonatal and early infantile pups from treated mothers had abundant 

micro-follicles, with columnar epithelium and small amount of colloid with frequent mitosis (see 

supplementary data 1). Thyroid activation index was 25% increased and T3 and T4 

concentrations were 25% decreased in both neonatal and early infantile hypothyroid rats when 

compared to control animals (see supplementary data 2).  

 

3.2. Hypothyroidism accelerated formation of primordial follicles 

 

Ovaries of neonatal and early infantile pups in both groups had no clear boundaries 

between cortex and medulla and the follicles were distributed in the entire ovary (Figure 1-ABCD). 

Under the surface epithelium and sparse tunica albuginea in the ovaries of both groups in the 

neonatal period, nests containing groups of resting and dividing oogonia and oocytes and primary 

and secondary follicles were present (Figure 1-A and B). In the early infantile period, nests were 

not present, but primordial, primary, secondary, and preantral follicles could be seen in both groups 

(Figure 1-C and D). Ovaries of neonatal hypothyroid pups had a decreased number of nests and 

decreased number of oogonia and oocytes per nest, as well as increased number of primordial 

follicles and decreased number of primary and secondary follicles (p<0.05) (Figure 1-A and B, 

Table 1). In the early infantile period, nests were not present. The number of primordial follicles 

was almost equal between groups, but primary, secondary, and preantral follicles dominated in 

ovaries of hypothyroid pups (Figure 1-C and D, Table 1).  

Preantral follicles were not present in ovaries of neonatal rats (Figure 1-A and B, Table 1). 

Numbers of primordial and secondary follicles were significantly higher in ovaries of early 

infantile hypothyroid rats in comparison to neonatal hypothyroid rats (Table 1). In ovaries of 

control animals, the number of primordial follicles was significantly higher, and the number of 
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primary follicles was significantly lower in early infantile pups compared to neonatal pups (Table 

1).  

 

 
Figure 1. Section through of the ovary of neonatal control (A) and hypothyroid (B) and early 

infantile control (C) and hypothyroid (D) rats. H&E. Bar 20 µm.  
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Table 1. Comparative review of number of nests, oogonia and oocytes per nest, primordial, 

primary, secondary and preantral follicles per ovary section of control groups of neonatal and early 

infantile days old rats. Results were presented as mean ± SE. Levels of significance: *p<0.05; 

**p<0.01; ***p<0.001. # - versus neonatal control, § - versus early infantile control, ¤ - versus 

neonatal hypothyroid.  

 

3.3. Primordial follicle oocytes in neonatal hypothyroid rats show the significant dilatation of sER  

Type of follicle Neonatal Early infantile 
  

Control 
 

Hypothyroid Control Hypothyroid 

Nests   
4.98 

± 
1.39 

 

 
2.85 #,** 

± 
1.39 

 
 

 
0 

 
0 

 
Oogonia and 

oocytes per nest 
 

 
5.74 

± 
0.99 

 
 

 
4.62 #,* 

± 
0.69 

 

 
0 

 
0 

 
Primordial  

 
 

 
31.56  

± 
0.46 

 

 
    64.69  #,*** 

           ± 
         2.18 

 

 
        57.9  #,*** 

± 
5.99 

 

 
       54.27 ¤, *** 

± 
3.92 

 
 

Primary  
 

48.36 
± 

5.16 
 

 
    40.76 #, * 

± 
5.53 

 

 
        27.12  #,*** 

± 
4.75 

 

 
    35.32  §, * 

± 
5.55 

 
 

Secondary 
 

26.29 
± 

3.55 
 

 
     21.72 #, * 

± 
2.95 

 

 
26.82 

± 
5.46 

 

 
     31.68 ¤, ** 

± 
6.4 

 
 

Preantral  
 
 

 
0 

 
0 

 
2.92 

± 
0.74 

 
   5.77 §, * 

± 
1.36 

 



 

Page | 14 

 

The intensity of Alizarin Red staining was higher in neonatal rats when compared to early 

infantile period in both groups (Figure 2-A1 and A2).  This staining demonstrated higher level of 

Ca++ in oocytes of hypothyroid rats, which indicated the possible changes in ultrastructural level. 

Subsequent ultrastructural analysis of primordial follicles, in neonatal and early infantile rats in 

both groups of animals, demonstrated the presence of oocytes and granulosa cells with finely 

dispersed chromatin in nuclei with eccentric one or two nucleoli (Figure 2-BCDE). Oocytes of 

hypothyroid neonatal rats had dilated sER when compared to the controls (Figure 2-B and C). 

Oocyte cytoplasm analysed at higher magnification shows different appearance of dilated and 

normal sER (Figure 2-F1 and F2). In the early infantile period there was no difference in sER 

morphology between two groups (Figure 2-D and E). Randomly dispersed vesicular cisternae of 

sER characterised oocyte cytoplasm of hypothyroid neonatal rats (Figure 2-C). On the contrary, 

dilatations of endoplasmic reticulum, if present, were small and rare in both groups of early 

infantile rats (Figure 2-D and E).  

Stereology-based analysis of oocytes in primordial follicles in neonatal and early infantile 

rats showed that the hypothyroid group had higher volume density of nucleus and sER and lower 

volume density of cytoplasm (Table 2). In hypothyroid animals, volume density of sER in the 

oocytes was higher in neonatal when compared to early infantile rats (Table 2). Volume density of 

Golgi complex and mitochondria was not different between groups, although a slight increase was 

detected in both neonatal and hypothyroid animals when compared to the controls (Table 2).   
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Figure 2. Alizarin red staining of ovaries of neonatal (A1) and early infantile (A2) rats. Primordial 

follicles TEM of neonatal ovaries in control (B) and hypothyroid (C) rats. Primordial follicles 

TEM of early infantile ovaries in control (D) and hypothyroid (E) rats. Arrows pointing the 

vacuolization in cytoplasm. Bar 20 μm for light microscopy, 5 μm for TEM. Dilated profiles of 

sER (F1 and F2). Note the ‘small tail’ on dilated sER (arrows), indicating it’s continuity with 

existing tubule-reticular domain (F1).  Several dilated (arrows) and normal (head arrows) sER 

profiles (F2). Bar 1 μm. 
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Table 2. Volume density (Vv) of different cell compartments in oocytes of primordial follicles of 

control and hypothyroid neonatal and early infantile rats. Results were presented as a percentage 

(mean ± SE). *p<0.05; **p<0.01; ***p<0.001. # - versus neonatal control, § - versus early infantile 

control, ¤ - versus neonatal hypothyroid.   

 

3.4. Primordial follicle oocytes contained increased number of mitochondria with altered 

morphology 

 

Mitochondria were evenly distributed in the cytoplasm of all tested groups and periods. In 

all conditions examined, three types of mitochondria were defined based on their morphology: 

Cell 
compartment 

Neonatal Early infantile 

  
Control 

 
Hypothyroid Control Hypothyroid 

Nucleus  
Vv (%) 

 

 
22.41 

± 
12.11 

 

 
30.67 #,* 

± 
6.23 

 
30.1 

± 
7.22 

 
28.53 

± 
8.02 

Cytoplasm 
Vv (%) 

 
 

 
61.23 

± 
11.71 

 

 
47.44 #,** 

± 
4.3 

 
52.77 

± 
5.8 

 
54.04 ¤,* 

± 
8.03 

Mitochondria 
Vv (%) 

 
  

 
7.3 
± 

1.27 
 

 
8.04 

± 
1.96 

 
7.61 

± 
3.02 

 
8.03 

± 
2.28 

Smooth 
endoplasmic 

reticulum 
Vv (%) 

 

 
7.06 

± 
1.95 

 

 
10.02 #,* 

± 
3.51 

 
8.06 

± 
1.93 

 
        5.56 §,**, ¤,*** 

± 
1.08 

Golgi complex 
Vv (%) 

 

 
2 
± 

1.33 
 

 
3.83 

± 
2.89 

 
1.46 

± 
1.75 

 
3.84 

± 
3.74 
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type one (M1) with elongated dark cristae and pale matrix, type two (M2) with short cristae and 

wide pale central area and  type three mitochondria (M3) with discontinued membrane and reduced 

number of cristae (Figure 3-A). Oocytes in neonatal hypothyroid rats had both increased number 

of and area occupied with M2 and M3 mitochondria (Figure 3-B and C). Oocytes in early infantile 

hypothyroid rats had decreased number of M1 and increased number of M3 mitochondria, i.e., 

those with discontinued membrane (Figure 3-D). Area occupied with M2 mitochondria was 

significantly increased in hypothyroid rats in the early infantile period (Figure 3-E). 

 

 
Figure 3. Three types of mitochondria (M1, M2, M3) (A). Percentage of three types of 

mitochondria in neonatal (B) and early infantile (D) rats. Average area of three types of 

mitochondria in neonatal (C) and early infantile (E) rats. Open bars, control group; gray bars, 

hypothyroid. Results are presented as mean ± standard error (M ± SE). Level of significance: * 

p<0,05.  

 

3.5. Advanced maturation of follicles is associated with higher expression of caspase-3, TUNEL 

and PCNA staining 

 

Cleaved caspase-3, when positive, was localised in nucleus and in perinuclear area of 

oocytes and granulosa cells in neonatal period from both groups (Figure 4-A and B). Oocytes 

forming primordial follicles in neonatal rats from both groups did not stain for cleaved caspase-3 
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(Figure 4-C). Oocytes forming primary follicles in control group in neonatal period were caspase-

3 negative, while in hypothyroid animals oocytes were slightly positive (Figure 4-C). In secondary 

follicles, oocytes from both groups had moderate positive staining for caspase-3 (Figure 4-C). In 

neonatal period, granulosa cells in primordial follicles were caspase-3 negative, while in primary 

and secondary follicles about one-third and about one-half were caspase-3 positive in both groups 

(Figure 4-D). TUNEL signal was localised in nucleus of oocytes and granulosa cells in neonatal 

period (Figure 4-E and F). TUNEL positive pre-diplotene oogonia or/and oocytes were noticed in 

both groups (Figure 4-E and F). In neonatal period, oocytes and granulosa cells in primordial 

follicles of control and hypothyroid group were TUNEL negative (Figure 4-G and H). Oocytes in 

primary follicles of both groups expressed weak signal (Figure 4-G). Oocytes in secondary 

follicles of control group were weakly stained, while those in hypothyroid group were moderately 

stained (Figure 4-G). In primary follicles, about one-third and in secondary follicles about one-

half of granulosa cells were TUNEL positive in both groups (Figure 4-H). PCNA was localised in 

the nucleus and perinuclear area of oocytes and granulosa cells in both groups of animals (Figure 

4-I and J). In neonatal period, hypothyroid pups had more PCNA positive oocytes and granulosa 

cells in all types of follicles (Figure 4-K and L). 

 

 



 

Page | 19 

Figure 4. Caspase-3 expression in in ovaries of neonatal control (A) and hypothyroid rats (B). 

Caspase-3 index of granulosa cells in both groups (C). Semi quantitative assessment of caspase-3 

positive oocytes in primordial, primary and secondary follicles of both groups (D). TUNEL 

expression in ovaries of neonatal control (E) and hypothyroid rats (F). TUNEL index of granulosa 

cells in both groups (G). Semi quantitative assessment of TUNEL positive oocytes in primordial, 

primary and secondary follicles of both groups (H). PCNA expression in ovaries of neonatal 

control (I) and hypothyroid rats (J). PCNA index of granulosa cells in both groups (K). Percentage 

of PCNA positive oocytes in primordial follicles of both groups (L). Open bars, control group; 

gray bars, hypothyroid group. Signal strength: (-) no signal, (+) weak, (++) moderate, (+++) severe. 

Chromogen diaminobenzidine (DAB), counterstain hematoxylin for caspase-3 and PCNA, methyl 

green for TUNEL. Bar 20µm. Results are presented as mean ± standard error (M ± SE). Levels of 

significance: *p<0,05; ***p<0.001.   

Nucleolar and perinucleolar expression of caspase-3, TUNEL and PCNA was detected in 

ovaries of early infantile period in both groups of animals (Figure 5-A, B, E, F, I and J). In the 

early infantile period, granulosa cells in primordial follicles were caspase-3 negative in both the 

control and the hypothyroid group (Figure 5C). About one-third of granulosa cells in primary 

follicles and about one-half of secondary and preantral follicles were caspase-3 positive (Figure 5-

C). Expression of cleaved caspase-3 was not detected in oocytes of primordial and primary follicles 

of both groups (Figure 5D). The expression of cleaved caspase-3 was weak in oocytes of secondary 

follicles of both groups as well as in oocytes of preantral follicles of control pups, while in the 

hypothyroid group, these oocytes were moderately stained (Figure 5-D). In the same period, about 

one-fifth of granulosa cells in primordial and primary follicles were TUNEL positive, while about 

one-half of them were positive in secondary and preantral follicles (Figure 5-G) in both groups of 

rats. TUNEL signal in oocytes was negative in primordial follicles, weak in primary follicles and 

moderate in secondary follicles (Figure 5-H). In preantral follicles, oocytes of the control group of 

rats expressed weak, while in oocytes in the hypothyroid group, a strong signal was detected 

(Figure 5-H). PCNA signal was not detected in granulosa cells of primordial follicles of both 

groups of animals (Figure 5-K). About one-third of granulosa cells in primary and about one-half 

in secondary and preantral follicles were PCNA positive in both groups of rats (Figure 5-K). A 

slightly higher number of PCNA positive oocytes was detected in the hypothyroid group of rats 

(Figure 5-L).  



 

Page | 20 

 

 

Figure 5. Caspase-3 expression in ovaries of early infantile control (A) and hypothyroid rats (B). 

Caspase-3 index of granulosa cells in both groups (C). Semi quantitative assessment of caspase-3 

positive oocytes in primordial, primary, secondary and preantral follicles of both groups (D). 

TUNEL expression in ovaries of early infantile control (E) and hypothyroid rats (F). TUNEL index 

of granulosa cells in both groups (G). Semi quantitative assessment of TUNEL positive oocytes in 

primordial, primary, secondary and preantral follicles of both groups (H). PCNA expression in 

ovaries of early infantile control (I) and hypothyroid rats (J). PCNA index of granulosa cells in 

both groups (K). Percentage of PCNA positive oocytes in primordial, primary, secondary and 

preantral follicles of both groups (L). Open bars, control group; gray bars, hypothyroid group. 

Signal strength: (-) no signal, (+) weak, (++) moderate, (+++) severe. Chromogen 

diaminobenzidine (DAB), counterstain hematoxylin. Bar 20 µm. Results are presented as mean ± 

standard error (M ± SE).   

 

4. Discussion 

 

In this work, we have examined the effect of maternal hypothyroidism on early 

folliculogenesis, i.e. assembly and maintenance of primordial follicles in rat pups. These processes 



 

Page | 21 

take place in neonatal and early infantile period (between days four and seven) in rat pups. In 

humans, this process ends during prenatal development, in the third trimester of gestation (Fulton 

et al, 2005). To mimic the effect of human maternal hypothyroidism on early folliculogenesis, rat 

pups were maintained as hypothyroid in prenatal period and until the period of weaning i.e. 

infantile period. Hypothyroidism in all neonatal animals used in this work was confirmed by 

significantly increased thyroid gland activation index (Ia). A strong link between increased Ia and 

hypothyroidism was previously described (Rajab et al, 2015). Hypothyroid pups had a reduction 

of body mass by one-fourth compared to the controls, leading to the conclusion that decrease of 

TH during prenatal and neonatal period has a profound effect on overall cell proliferation and 

metabolism. The difference in body mass also became less important in early infantile period 

leading to the conclusion that induced hypothyroidism was mild and that tissues start to “find 

escape” from TH deficiency. 

The main findings of this work are that during neonatal and early infantile period 

hypothyroid animals have: 1) premature formation of primordial follicles in developing ovarian 

cortex with dilated sER and altered mitochondrial morphology in oocytes; 2) a slightly higher 

number of apoptotic and three times higher number of PCNA positive oocytes and granulosa cells 

in primordial follicles and 3) slightly higher number of maturing primary, secondary, and preantral 

follicles without evident difference in apoptotic or cell proliferation markers. All of these findings 

indicate premature folliculogenesis with ultrastructural changes but relative/temporary resistance 

of all types of follicles to apoptosis in the neonatal and early infantile period due to maternal 

hypothyroidism. 

All the main findings of this work are focused on primordial follicles. Entrance to meiotic 

profase I, transition from oogonia to primary oocyte, with a formation of squamous granulosa cells 

layer that surrounds oocytes all  characterise follicle assembly and prepare them for long term 

quiescence, i.e., until selective activation in pre-pubertal and pubertal period (Eppig and Handel, 

2011; Adhikari et Liu 2010). Our results have demonstrated that in hypothyroid rat pups this 

process is activated earlier than in control animals. This leads to the conclusion that decreased 

concentrations of TH induce premature proliferation of granulosa cells and differentiation of nests 

toward primordial follicles. Early infantile hypothyroid pups also have an increased number of 

primary and secondary follicles indicating that the whole process of folliculogenesis occurs faster, 

consequently inducing premature loss of follicles. In fact, the finding of premature folliculogenesis 
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is in accordance with our previous findings that 15, 30 and 60 days old hypothyroid rats have 

increased numbers of atretic follicles at all stages of development when compared to the controls 

(Radovanović, 1993; Radovanović, 2012). The phenomenon of premature activation of oocytes 

with complete elimination of all follicles in early maturity was also described in mice with specific 

deletion of Pten (Reddy et al., 2008) confirming that premature activation is detrimental to ovarian 

function in adulthood.  

Our results also demonstrate that in neonatal and early infantile period oocytes and 

granulosa cells of primordial follicles have the impaired sER and mitochondrial morphology, but 

without nuclear condensation nor other signs of apoptosis on subcellular level indicating that these 

structural changes are not correlated with immediate cell death. Moreover, the percentage of 

apoptotic oocytes in primordial follicles is quite low and is only slightly different between 

hypothyroid and control pups in neonatal and early infantile period. Surprisingly, the level of 

PCNA expression was higher in oocytes and granulosa cells in primordial follicles of neonatal 

hypothyroid pups. The majority of primordial follicles in this period should stay inactive in an 

attempt to preserve oocytes until puberty. There is evidence that granulosa cells during the time of 

“relative quiescence” do not express PCNA (Picut et al., 2008) nor assimilate BrdU (Fenwick and 

Hurst, 2002). This is in accordance with our data from control animals and supports the view that 

quiescent state of oocytes is dependent on quiescent state of granulosa cells (McGee and Hsueh, 

2000). It is known that PCNA is necessary for cellular DNA synthesis and cell cycle progression, 

as well as for DNA reparation (Jaskulski et al., 1988; Liu et al., 1989). We could suppose that 

PCNA expression indicates enhanced reparative processes in affected granulosa cells and oocytes 

in primordial follicles in neonatal hypothyroid pups.  

In our study, dilatation of sER in neonatal hypothyroid rats could indicate stress response 

due to inadequate overall metabolic pathways as a result of TH deficiency, and as demonstrated in 

mitochondria, more fluid membranes due to altered fatty acyl composition (Brookes et al, 1998).  

Previously, it was also found that alterations in ER fatty acid and lipid composition result in the 

inhibition of sarco/endoplasmic reticulum calcium ATPase (SERCA) activity and ER stress that 

lead to its dilatation (Fu et al., 2011). Apart from the alteration in membranes, in order to manage 

the ER stress, unfolded protein response (UPR) increases ER lumen as a consequence of 

accumulation of its contents, particularly those that are synthesised as a stress-response (review: 

Schontal, 2012). Also, massive vacuolization, i.e dilatation of sER could precede autophagy-type 
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oocyte death in primordial follicles of adult rats (Escobar Sánchez et al., 2012). All these changes 

could lead to sER accumulation of Ca++ and more intense Alizarin red staining in neonatal ovaries 

of hypothyroid rats. Impaired sER function is also related to impaired mitochondria function and 

harmonised function of both organelles is important for normal intracellular Ca++ homeostasis 

(Báthori et al, 2006; Sano et al, 2009).  

Although not explicitly shown in this study, altered mitochondrial morphology is 

connected to their impaired function (review: Galloway and Yoon, 2012). Impaired mitochondrial 

function sensitises cells to death via apoptosis (review: Shutt and McBride, 2012). Apparently, the 

consequence of impaired mitochondrial function is not visible in the neonatal and early infantile 

period of pups’ development, but rather in late infantile, pre-pubertal, pubertal period, when 

apoptosis, i.e. atresia of follicles was detected (Radovanovic et al 2013). In neonatal and early 

infantile period, primordial follicles are resting and oocyte mitochondrial activity is lower 

comparing to later stages of folliculogenesis (Dumollard et al., 2006). In fact, it is also known that 

altered mitochondrial morphology precedes activation of caspase-3 (review: Galloway and Yoon, 

2012). We could suppose, then, that despite alteration in sER and mitochondria, oocytes could be 

protected from apoptosis until a rise in LH and FSH would stimulate glucose consumption and 

anabolic state of the follicles (review: Sutton-McDowall et al., 2010). This anabolic state, in the 

case of hypothyroidism and altered sER and mitochondria, would lead oocytes and granulosa cells 

into inevitable apoptosis and atresia (Radovanovic et al., 2012). The altered mitochondrial 

morphology was also found in neonatal, infantile, and pubertal cerebellar neurons of rats made 

hypothyroid due to maternal hypothyroidism (Singh et al., 2003). Their altered morphology 

induced release of apoptogenic proteins and was connected to extensive apoptosis during postnatal 

neurogenesis (Singh et al., 2003). At this point, we can conclude that in the rat model that mimics 

human maternal hypothyroidism, mechanisms of damage to tissues/cells that have no possibility 

to renew in postnatal development converge to alteration of sER and mitochondria, possible Ca++ 

misbalance, and subsequent proneness to apoptosis.    

Our results also demonstrate that in all experimental conditions apoptosis is visible only in 

primary and secondary follicles that are predestined to disappear in a first wave of folliculogenesis, 

indicating that this process is not affected in hypothyroidism.  

 

5. Conclusion 
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Considering all of the findings that our group has gathered concerning the effect of mild 

maternal hypothyroidism on the development of offspring’s female gonads, we can hypothesise 

that alterations on sER and mitochondrial level that exist in the pool of prematurely formed resting 

primordial follicles could be without clinical signs during infancy, but could represent an 

underlying cause of potential female reproductive problems in sexually mature age. 

 

6. Acknowledgements 

 

The authors would like to thank to Anita Lazarević and Maja Bogdanović for their technical 

assistance.  

Funding: The study was supported by Serbian Ministry for Science and Technology grant # 

175061. 

 

 

 

 

 

 

 

 

  



 

Page | 25 

References 

 

Abalovich, M., Mitelberg, L., Allami, C., Gutierrez, S., Alcaraz, G., Otero, P., Levalle, O., 2007. 

Subclinical hypothyroidism and thyroid autoimmunity in women with infertility. Gynecol. 

Endocrinol. 23(5), 279-283. http://dx.doi.org/10.1080/09513590701259542.  

 

Adhikari, D., Liu, K., 2010. mTOR signaling in the control of activation of primordial follicles. 

Cell Cycle. 9(9), 1673-1674. http://dx.doi.org/10.4161/cc.9.9.11626.  

 

Alisi, A., Demori, I., Spagnuolo, S., Pierantozzi, E., Fugassa, E., Leoni, S., 2005. Thyroid status 

affects rat liver regeneration after partial hepatectomy by regulating cell cycle and apoptosis. Cell. 

Physiol. Biochem. 15(1-4), 069-076. http://dx.doi.org/10.1159/000083639.  

 

Bagavandoss, P., England, B., Asirvatham, A., Bruot, B. C., 1998. Transient induction of 

polycystic ovary-like syndrome in immature hypothyroid rats. Exp. Biol. Med. 219(1), 77-84. 

http://dx.doi.org/10.3181/00379727-219-44319.  

 

Báthori, G., Csordás, G., Garcia-Perez, C., Davies, E., Hajnóczky, G., 2006. Ca2+-dependent 

control of the permeability properties of the mitochondrial outer membrane and voltage-dependent 

anion-selective channel (VDAC). J. Biol. Chem. 281(25), 17347-17358. 

http://dx.doi.org/10.1074/jbc.m600906200.  

 

Baumann, O., Walz, B., 2001. Endoplasmic reticulum of animal cells and its organization into 

structural and functional domains. Int. Rev. Cytol. 205, 149-214. http://dx.doi.org/10.1016/S0074-

7696(01)05004-5.  



 

Page | 26 

 

Berridge, M. J., 2002. The endoplasmic reticulum: a multifunctional signaling organelle. Cell 

calcium. 32(5), 235-249. http://dx.doi.org/10.1016/S0143416002001823.  

 

Bordbar, H., Mesbah, F., Talaei, T., Dehghani, F., & Mirkhani, H. 2014. Modulatory effect of 

gonadotropins on rats’ ovaries after nandrolone decanoate administration: a stereological 

study. Iran J Med Sci, 39(1), 44.  
 

Brookes, P. S., Buckingham, J. A., Tenreiro, A. M., Hulbert, A. J., & Brand, M. D. 1998. The 

proton permeability of the inner membrane of liver mitochondria from ectothermic and 

endothermic vertebrates and from obese rats: correlations with standard metabolic rate and 

phospholipid fatty acid composition. Comparative Biochemistry and Physiology Part B: 

Biochemistry and Molecular Biology, 119(2), 325-334. http://dx.doi.org/10.1016/S0305-

0491(97)00357-X. 

 

Bucci, T. J., Bolon, B., Warbritton, A. R., Chen, J. J., & Heindel, J. J. 1997. Influence of sampling 

on the reproducibility of ovarian follicle counts in mouse toxicity studies. Reproductive 

Toxicology, 11(5), 689-696.  http://dx.doi.org/10.1016/S0890-6238(97)00034-8 

 

Chan, W. Y., Ng, T. B., 1995. Effect of hypothyroidism induced by propylthiouracil and thiourea 

on male and female reproductive systems of neonatal mice. J. Exp. Zool. 273(2), 160-169. 

http://dx.doi.org/10.1002/jez.1402730209.  

 

Charleston, J. S., Hansen, K. R., Thyer, A. C., Charleston, L. B., Gougeon, A., Siebert, J. R., ... & 

Klein, N. A. 2007. Estimating human ovarian non-growing follicle number: the application of 

modern stereology techniques to an old problem†. Hum Reprod, 22(8), 2103-2110. 

http://dx.doi.org/10.1093/humrep/dem137  



 

Page | 27 

 

Cheng, S. Y., Gong, Q. H., Parkison, C., Robinson, E. A., Appella, E., Merlino, G. T., Pastan, I., 

1987. The nucleotide sequence of a human cellular thyroid hormone binding protein present in 

endoplasmic reticulum. J. Biol. Chem. 262(23), 11221-11227.  

 

De Groot, L., Abalovich, M., Alexander, E. K., Amino, N., Barbour, L., Cobin, R. H., Eastman, 

C. J., Lazarus, J. H., Luton, D., Mandel, S. J., Mestman, J., Rovet, J., Sullivan, S., 2012. 

Management of thyroid dysfunction during pregnancy and postpartum: an Endocrine Society 

clinical practice guideline. J. Clin. Endocr. Metab. 97(8), 2543-2565. 

http://dx.doi.org/10.1210/jc.2011-2803.  

 

Dijkstra, G., de Rooij, D. G., de Jong, F. H., van den Hurk, R., 1996. Effect of hypothyroidism on 

ovarian follicular development, granulosa cell proliferation and peripheral hormone levels in the 

prepubertal rat. Eur. J. Endocrinol. 134(5), 649-654. http://dx.doi.org/10.1530/eje.0.1340649.  

 

Dumollard, R., Duchen, M., Sardet, C., 2006. Calcium signals and mitochondria at fertilisation. 

Semin. Cell. Dev. Biol. 17(2), 314-323. Academic Press. 

http://dx.doi.org/10.1016/j.semcdb.2006.02.009.  

 

Eppig, J. J., Handel, M. A., 2012. Origins of granulosa cells clarified and complexified by waves. 

Biol Reprod, 86(2), 34. http://dx.doi.org/10.1095/biolreprod.111.096651.  

 

Fenwick, M. A., Hurst, P. R., 2002. Immunohistochemical localization of active caspase-3 in the 

mouse ovary: growth and atresia of small follicles. Reproduction. 124(5), 659-665. 

http://dx.doi.org/10.1530/rep.0.1240659.  



 

Page | 28 

 

Fu, S., Yang, L., Li, P., Hofmann, O., Dicker, L., Hide, W., Xihong, L., Watkins, S. M., Ivanov, 

A. R., Hotamisligil, G. S., 2011. Aberrant lipid metabolism disrupts calcium homeostasis causing 

liver endoplasmic reticulum stress in obesity. Nature. 473(7348), 528-531. 

http://dx.doi.org/10.1038/nature09968.  

 

Fulton, N., Martins da Silva, S. J., Bayne, R. A. L., Anderson, R. A., 2005. Germ cell proliferation 

and apoptosis in the developing human ovary. J. Clin. Endocr. Metab. 90(8), 4664-4670.  

http://dx.doi.org/10.1210/jc.2005-0219.  

 

Galloway, C. A., Yoon, Y., 2013. Mitochondrial morphology in metabolic diseases. Antioxid. 

Redox. Sing. 19(4), 415-430. http://dx.doi.org/10.1089/ars.2012.4779.  

 

Gharib, H., Tuttle, R. M., Baskin, H. J., Fish, L. H., Singer, P. A., McDermott, M. T., 2005. 

Subclinical thyroid dysfunction: a joint statement on management from the American Association 

of Clinical Endocrinologists, the American Thyroid Association, and the Endocrine Society. J. 

Clin. Endocr. Metab. 90(1), 581-585. http://dx.doi.org/10.1210/jc.2004-1231.  

 

Haddow, J. E., Palomaki, G. E., Allan, W. C., Williams, J. R., Knight, G. J., Gagnon, J., O’Heir, 

C. E., Mitchel, M. L., Hermos, R. J., Waisbren, S. E., Faix, J. D., Klein, R. Z., 1999. Maternal 

thyroid deficiency during pregnancy and subsequent neuropsychological development of the child. 

New Engl. J. Med. 341(8), 549-555. http://dx.doi.org/10.1056/nejm199912233412613.  

 

Harper, M. E., Seifert, E. L., 2008. Thyroid hormone effects on mitochondrial energetics. Thyroid. 

18(2), 145-156. http://dx.doi.org/10.1089/thy.2007.0250.  



 

Page | 29 

 

Holsberger, D. R., Jirawatnotai, S., Kiyokawa, H., Cooke, P. S., 2003. Thyroid hormone regulates 

the cell cycle inhibitor p27Kip1 in postnatal murine Sertoli cells. Endocrinology. 144(9), 3732-

3738. http://dx.doi.org/10.1210/en.2003-0389.  

 

Incerpi, S., Davis, P. J., De Vito, P., Farias, R. N., Lin, H. Y., Davis, F. B., 2008. Nongenomic 

actions of thyroid hormone and intracellular calcium metabolism. Clinic. Rev. Bone Miner. Metab. 

6(1-2), 53-61. http://dx.doi.org/10.1007/s12018-008-9019-1.  

 

Jaskulski, D., Mercer, W. E., Calabretta, B., Baserga, R., 1988. Inhibition of cellular proliferation 

by antisense oligodeoxynucleotides to PCNA cyclin. Science. 240(4858), 1544-1546. 

http://dx.doi.org/10.1126/science.2897717.   

 

Köhrle, J., 1995. Thyroid hormone deiodinases--a selenoenzyme family acting as gate keepers to 

thyroid hormone action. Acta Med. Aust. 23(1-2), 17-30.  

 

Liu, Y. C., Marraccino, R. L., Keng, P. C., Bambara, R. A., Lord, E. M., Chou, W. G., Zain, S. B., 

1989. Requirement for proliferating cell nuclear antigen expression during stages of the Chinese 

hamster ovary cell cycle. Biochemistry-US. 28(7), 2967-2974. 

http://dx.doi.org/10.1021/bi00433a034.  

 

López, M., Alvarez, C. V., Nogueiras, R., Diéguez, C., 2013. Energy balance regulation by thyroid 

hormones at central level. Trends Mol. Med. 19(7), 418-427. 

http://dx.doi.org/10.1016/j.molmed.2013.04.004.  

 



 

Page | 30 

Mazaud, S., Guigon, C. J., Lozach, A., Coudouel, N., Forest, M. G., Coffigny, H., Magre, S., 2002. 

Establishment of the reproductive function and transient fertility of female rats lacking primordial 

follicle stock after fetal γ-irradiation. Endocrinology. 143(12), 4775-4787. 

http://dx.doi.org/10.1210/en.2002-220464.  

 

McGee, E. A., Hsueh, A. J., 2000. Initial and cyclic recruitment of ovarian follicles 1. Endocr. 

Rev. 21(2), 200-214. http://dx.doi.org/10.1210/edrv.21.2.0394.  

 

Meng, L., Rijntjes, E., Swarts, H., Bunschoten, A., van der Stelt, I., Keijer, J., & Teerds, K. J. 

(2016). Dietary-Induced Chronic Hypothyroidism Negatively Affects Rat Follicular Development 

and Ovulation Rate and Is Associated with Oxidative Stress. Biology of reproduction, biolreprod-

115, http://dx.doi.org/10.1095/biolreprod.115.136515i. 

 

Moghaddam-Dorafshani, M., Jalali, M., Nikravesh, M. R., Ebrahimzadeh, A. R., 2013. Study of 

the Effect of Hypothyroidism on the Apoptotic Index in Rat Ovarian Follicles, Using the TUNEL 

Technique. Anat. Sci. J. 10(1), 25-36.  

 

Ortega, E., Rodriguez, E., Ruiz, E., Osorio, C., 1990. Activity of the hypothalamo-pituitary ovarian 

axis in hypothyroid rats with or without triiodothyronine replacement. Life Sci. 46(6), 391-395. 

http://dx.doi.org/10.1016/0024-3205(90)90081-2.  

 

Picut, C. A., Swanson, C. L., Scully, K. L., Roseman, V. C., Parker, R. F., Remick, A. K., 2008. 

Ovarian follicle counts using proliferating cell nuclear antigen (PCNA) and semi-automated image 

analysis in rats. Toxicol. Pathol. 36(5), 674-679. http://dx.doi.org/10.1177/0192623308317428.  

 



 

Page | 31 

Picut, C. A., Dixon, D., Simons, M. L., Stump, D. G., Parker, G. A., Remick, K. A., 2015. Postnatal 

Ovary Development in the Rat: Morphologic Study and Correlation of Morphology to 

Neuroendocrine Parameters. Toxicol. Pathol. 43, 343-353 

http://dx.doi.org/10.1177/0192623314544380  

 

Radovanovic, A., 1993. Effect of maternal hypothyroidism and perinatal hypothyroidism on 

juvenile rats ovaries. MSc thesis. Faculty of Veterinary medicine, University of Belgrade. 

 

Radovanović, A., Roksandić, D., Šimić, M., Marković, D., Gledić, D., 2012. Effects of induced 

maternal hypothyroidism on the ovarian development of offspring rats. Acta Vet- Beograd. 62(5-

6), 483-493. doi:10.2298/AVB1206483R. 

 

Rajab, N. M. A., Ukropina, M., Cakic-Milosevic, M., 2015. Histological and ultrastructural 

alterations of rat thyroid gland after short-term treatment with high doses of thyroid hormones. 

Saudi J. Biol. Sci. http://dx.doi.org/10.1016/j.sjbs.2015.05.006. 

 

Reddy, P., Liu, L., Adhikari, D., Jagarlamudi, K., Rajareddy, S., Shen, Y., Du, C., Tang, W., 

Hämäläinen, T., Stanford, P. L., Lan, Z. J., Cooney, A. J., Huhtaniemi, I., Liu, K., 2008. Oocyte-

specific deletion of Pten causes premature activation of the primordial follicle pool. Science. 

319(5863), 611-613. http://dx.doi.org/10.1126/science.1152257.  

 

Sánchez, M. E., Martínez, O. E., Vázquez-Nin, G. H. 2012. Immunohistochemical and 

ultrastructural visualization of different routes of oocyte elimination in adult rats. Eur. J. 

Histochem. 56(2), 102-110. http://dx.doi.org/10.4081/ejh.2012.17  

 



 

Page | 32 

Sano, R., Annunziata, I., Patterson, A., Moshiach, S., Gomero, E., Opferman, J., Forte, M., d'Azzo, 

A., 2009. GM1-ganglioside accumulation at the mitochondria-associated ER membranes links ER 

stress to Ca 2+-dependent mitochondrial apoptosis. Mol. Cell. 36(3), 500-511. 

http://dx.doi.org/10.1016/j.molcel.2009.10.021.  

 

Schönthal, A. H., 2012. Endoplasmic reticulum stress: its role in disease and novel prospects for 

therapy. Scientifica 2012. http://dx.doi.org/10.6064/2012/857516.  

 

Shutt, T. E., McBride, H. M., 2013.  Staying cool in difficult times: mitochondrial dynamics, 

quality control and the stress response. BBA-Mol. Cell. Res. 1833(2), 417-424. 

http://dx.doi.org/10.1016/j.bbamcr.2012.05.024.  

 

Singh, R., Upadhyay, G., Godbole, M. M., 2003. Hypothyroidism alters mitochondrial 

morphology and induces release of apoptogenic proteins during rat cerebellar development. J. 

Endocrinol. 176(3), 321-329. http://dx.doi.org/10.1677/joe.0.1760321.  

 

Sutton-McDowall, M. L., Gilchrist, R. B., Thompson, J. G., 2010. The pivotal role of glucose 

metabolism in determining oocyte developmental competence. Reproduction, 139(4), 685-695. 

http://dx.doi.org/10.1530/REP-09-0345.  

 

Tilly, J. L., 2003. Ovarian follicle counts—not as simple as 1, 2, 3. Reprod. Biol. Endocrin. 1(11), 

10-1186.  

 

Weibel E. R., Kistler G. S., Scherle W. F., 1966. Practical stereological methods for morphometric 

cytology. J Cell Biol, 30(1), 23-38. http://dx.doi.org/10.1083/jcb.30.1.23.  



 

Page | 33 

 

Weibel E. R., 1979. Practical methods for biological morphometry, in: Stereological methods. 

Academic Press, London, 40-116. http://dx.doi.org/10.1002/sca.4950040411.  

 

 


