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Simple Summary: West Nile fever is an arthropod-borne viral disease that is transmitted from birds
to humans and animals by mosquitoes. Humans may develop a severe disease, which sometimes
can be fatal. At the end of the 20th century, the first outbreaks of West Nile fever among humans in
urban environments in Eastern Europe and the United States were reported. The epidemics were
characterized by the neurological form of the disease with a fatal outcome. Since the first outbreak of
the disease in Serbia, the highest number of cases occurred in 2018. West Nile fever spread is driven
by location and time, which means nearby locations and periods have similar features. Recognition
of patterns of spread of the disease has the potential to facilitate the mosquito control program and
disease prevention. This study aimed to examine the geographical and temporal similarities of
registered cases during the epidemics in the period 2017–2019 in South Banat District, Serbia. We
identified the following factors as crucial for the prediction of possible outbreaks: the presence of
virus in natural reservoirs, mosquito abundance; precipitation, high water level of rivers followed
by a consequent sudden decrease of precipitation and withdrawal of rivers into the main bed, and
favorable temperatures.

Abstract: West Nile virus (WNV) is an arthropod-born pathogen, which is transmitted from wild
birds through mosquitoes to humans and animals. At the end of the 20th century, the first West Nile
fever (WNF) outbreaks among humans in urban environments in Eastern Europe and the United
States were reported. The disease continued to spread to other parts of the continents. In Serbia, the
largest number of WNV-infected people was recorded in 2018. This research used spatial statistics
to identify clusters of WNV infection in humans and animals in South Banat County, Serbia. The
occurrence of WNV infection and risk factors were analyzed using a negative binomial regression
model. Our research indicated that climatic factors were the main determinant of WNV distribution
and were predictors of endemicity. Precipitation and water levels of rivers had an important influence
on mosquito abundance and affected the habitats of wild birds, which are important for maintaining
the virus in nature. We found that the maximum temperature of the warmest part of the year and the
annual temperature range; and hydrographic variables, e.g., the presence of rivers and water streams
were the best environmental predictors of WNF outbreaks in South Banat County.
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1. Introduction

West Nile virus (WNV) is a single-stranded RNA arbovirus from the Flaviviridae
family, genus Flavivirus. WNV is primarily a zoonotic agent transmitted between birds as
the main reservoir hosts and mosquitoes as vectors. Humans and horses can be infected as
spillovers host, but the infection in these organisms ends without further transmission of
the virus, i.e., these organisms are dead-end hosts [1,2]. WNV is today considered the most
important cause of viral encephalitis in humans worldwide [3].

The WNV has been isolated or identified serologically in many vertebrate species [4].
Since 1998, cases of viral encephalitis caused by WNV in horses have been reported in Italy,
France, and North America. Research conducted in parts of Europe and the Middle East
has established that as much as one-third of the tested horses were exposed to the WNV,
with or without symptoms of the disease [5,6].

Since the discovery of the first infection in humans in 1937 [4], there has been a
significant spread of the disease globally. In most cases, the infection was asymptomatic
and only a few cases of severe neurological forms of the disease were reported [2]. At
the end of the 20th century, the first West Nile fever WNF outbreaks among humans in
urban environments in Eastern Europe and the United States were reported [2]. Since 2012,
human WNF cases have been recorded every year in Serbia. In terms of the number
of patients, the years 2013 and 2018 stand out, when the largest numbers of clinical
cases of infection were registered [7]. The epidemics were characterized by a serious
neurological form of the disease with a fatal outcome. During these epidemics, several
common characteristics were observed at the time of the disease outbreaks: the Culex
pipiens mosquito was identified as a vector of the disease, significantly less precipitation
was registered than the usual multi-year average, significantly higher than normal summer
temperatures were recorded, and all areas were located near large rivers which provide
adequate living conditions for residential and migratory species of wild birds [2]. Besides,
the epidemic in the northeastern United States was accompanied by the epizootic in birds,
especially crows [8]. The sudden appearance of WNF in the United States can also be
related to changes in the feeding habits of Cx. pipiens, the dominant enzootic species. Shifts
in feeding habits from competent avian hosts early in the early stage of the epidemic to
incompetent humans after mosquito infection, resulted in synergistic effects that greatly
amplified the number of human infections [9].

Given that WNF is an arthropod-borne disease, the spread of the disease is conditioned
by climatic variations and landscape changes to the natural habitats of the mosquitoes
and available bird habitats [1,4], geospatial data can be used for risk prediction and risk
mapping [10]. With the development of geographic information system (GIS) software
and other related tools for spatial data analysis, substantial progress has been made in risk
analysis [11]. Numerous studies have used geospatial data and GIS software for detecting,
analyzing, and predicting spatial patterns of disease occurrence [10,12–14]. The advantage
of the GIS analytical tool is the ability to integrate and analyze risk factors and create
WNV risk maps for humans and other susceptible hosts [15]. In addition to visualizing
epidemiological data and presenting the geographical distribution of the disease in a
much more predictive manner, the spatiotemporal analysis identifies spatial and temporal
clusters and identifies risk geographic areas. Spatial inquiry can also inform vector control
policy, including where to prioritize limited control resources [16–18]. By identifying
locations of the WNF hot spots, the mosquito control treatments can be rationally and more
efficiently applied primarily in high-risk areas and, therefore, will more efficiently decrease
virus transmission [17,19].

The analyses conducted in this paper aimed to discover spatial, temporal, and spa-
tiotemporal clusters of WNV infection in humans and animals in South Banat District,
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Serbia, also researching for causal relationships, i.e., identifying such clusters of WNV cases
and researching possible causal or associative relationships with meteorological factors.
Our focus was on understanding spatiotemporal patterns and risk factors associated with
WNV infection in humans and domestic animals. An additional aim was to investigate
the epidemiological characteristics of WNV outbreaks and provide a scientific basis for
the effective control of this disease. Spatial research into the geography of the West Nile
disease in Serbia includes WNV surveillance in mosquitos (collected at trap locations),
surveillance of WNV infection in horses, wild bird surveillance for WNV presence, and
collection of human case residential addresses [20,21]. In this study, the data on disease
occurrence in humans and animals and locations where WNV-positive mosquito pools are
found were combined with predictor variables from geospatial data sets to develop risk
maps and identify hotspots, i.e., high-risk areas of WNV.

2. Materials and Methods

As shown in Figure 1, the analytical workflow involved collecting, processing, and
descriptive analysis of cases of WNV infection in humans and animals; retrieving, manipu-
lating, and processing environmental data; processing geospatial data, and; developing
negative binomial regression models to measure the association between WNV infection
and climatological factors. It comprises five major parts, i.e., collection and processing
of epidemiological data, collection and processing of environmental data, exploratory
analysis of WNV case data, statistical modeling, and mapping the distribution of WNV
cases.
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Figure 1. Analytical workflow of West Nile virus (WNV) epidemic explanatory analysis and risk mapping.

Cases of WNV infection and climatological factors in South Banat District, were anal-
ysed using ESRI’s ArcGIS 10.5 software (ESRI Geographic information system company,
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West Redlands, CA, USA), then SaTScan v.9.6 (Martin Kulldorff and Information Man-
agement Services Inc., Boston, MA, USA), IBM SPSS Statistics v.26 (IBM, SPSS Inc., New
York, NY, USA), and Pavanaarekh v.5. (Envitrans Infosolutions Private Limited, Ghazi-
abad, India). Data were manipulated temporally for the entire period and through spatial
programming. Local patterns for grouping of animals, humans, and mosquitoes that were
positive over time for the presence of WNV were investigated, using three types of models,
from heat maps to complex space–time models.

2.1. Data and Sources of Information

For the spatiotemporal analysis, we collected data for the time of the onset of the dis-
ease, incidences, and geographic locations of registered cases. Those data were aggregated
based on geographic locations. The final input data had to be compliant with the software
in use, i.e., ArcGIS 10.5 and SaTScan v 9.6. Data on WNV cases, animals seropositive
for WNV, and WNV-positive mosquito pools were georeferenced and transformed into
shapefiles that were used for spatial, temporal, and spatiotemporal analysis. A variety of
data sets were compiled that contained land cover information and environmental data
relevant to disease transmission and the survival of WNV in nature. As base maps, polygon
shapefiles and rasters of the geography of South Banat District were used [22,23].

Land cover data for South Banat District were acquired from Copernicus Land Moni-
toring Service (CLMS). Their CORINE Land Cover (CLC) inventory consists of an inventory
of land cover in 44 classes, uses a minimum mapping unit of 25 hectares for areal phenom-
ena, and a minimum width of 100 m for linear phenomena. Land cover data include land
use, vegetation, topography, soils, and wetlands [24].

Climatic data, i.e., daily temperature, precipitation, and the water level were acquired
from the Meteorological Service of the Republic of Serbia. We calculated two-weekly mean
temperature (◦C), total monthly precipitation (mm), and monthly river water levels (cm)
for the entire study period [25]. Then, we imported these data into regression models, and
tested them against registered WNV human cases and registered WNV-positive mosquito
pools. The data on registered WNV infection in animals and WNV-positive mosquito pools
obtained during our research were used in the analysis, as were data taken from the Institute
of Public Health Pančevo and the European Center for Disease Prevention and Control
(ECDC), i.e., official data on registered WNV human cases [9,20]. In negative binomial
regression models, WNV human cases and data on WNV-positive mosquito pools were
aggregated monthly. Negative binomial regression analysis was used to test for associations
between predictors (explanatory variables) and dependent count variables, i.e., climate
factors and WNV human cases and positive mosquito pools, respectively. Given that it
is the variance of the dependent variables was higher than the mean (variance = 36.68,
mean = 3.24, CV = 187%), the data related to WNV human cases were first tested to
determine whether they followed Poisson’s theoretical distribution. The Kolmogorov–
Smirnov (KS) test was used to determine whether the data on WNV human infections
originates from a population with a specific distribution, i.e., the Poisson distribution.
The obtained result of the KS test (asymptotic p-value of 0.000) confirmed that the data
do not follow the Poisson distribution. Moreover, the significant deviation of variance
from the mean value of registered WNV human cases (the deviance over the degree of
freedom equal to 1.008) indicated overdispersion of the data. Taking into account these
observations and the results of statistical tests, the negative binomial regression model was
found appropriate for the analysis. The goodness of fit determined how well the selected
model fits a set of observations compared to the other model (Poisson regression model).
In assessing whether a given distribution is suited to a data set, the following tests were
used: Likelihood test, Bayesian information criterion and Akaike’s information criterion.
The omnibus test, i.e., likelihood ratio chi-square test was used to test whether the negative
binomial regression model represents a significant improvement in fit compared to the
null model. The results of the omnibus test showed the significant improvement of the
model based on the negative binomial distribution, i.e., likelihood ratio chi-square statistic
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equal to 12.48, p-value of 0.002. The same procedure was applied when it came to data on
WNV-positive mosquito pools. The regression model was validated in IBM SPSS software
by performing a cross-validation method with the same data divided into two parts, i.e.,
the training sample which covered 55% data and the test sample which covered 45% of the
data.

2.2. Study Area

The study area was the South Banat Administrative District with its settlements. The
area is rich in running and standing waters, has a network of irrigation channels, and
incorporates the Danube and Tamis rivers, with the Danube river forming a delta right
next to the city of Pančevo, as well as in several locations downstream. The administrative
center of the district is the city of Pančevo, which is located about 2.5 km upstream from
the mouth of the river Tamis into the Danube. The district lies in the region of Banat and
has a population of 293,730 inhabitants [26,27]. The area is also a significant habitat for
wild birds [28]. The South Banat Administrative District extends to Serbia’s north, in the
southeastern part of the Autonomous Province of Vojvodina. It is bordered by the Danube
and Tamis rivers, and on the east by the state border with Romania. South Banat covers an
area of 4245 km2 [26].

Livestock production in South Banat is heterogeneous. Different types of domestic
animals are bred and held on rural holdings and industrial farms. Domestic animals in
rural areas are usually reared extensively on backyard holdings, but intensive production
on industrial farms is also present [29].

2.3. Mosquito Pooled Samples

To collect pooled mosquito samples, modified Centers for Disease Control and Preven-
tion (CDC) mosquito light traps were set in the afternoons at selected location sites. Criteria
for site selection were accessibility, an unkempt natural environment, with lots of trees and
vegetation, and the vicinity of farms and backyard holdings, wetlands, temporary standing
water, water-filled containers, and shady places. The mosquitoes were brought into the
Laboratory for Medical and Veterinary Entomology, Faculty of Agriculture, University of
Novi Sad. The mosquitoes were kept alive on dry ice to prevent virus degradation. In
the laboratory, mosquitoes were sorted, identified, and grouped on a cold table. Only the
Cx. pipiens mosquitoes (biotypes pipiens and modestus) were separated and transported on
dry ice to the Department for Virology of the Scientific Veterinary Institute Novi Sad to be
tested for WNV presence. Mosquitoes were tested in pools of up to 50 individuals. When
traps contained more than 300 Cx. pipiens mosquitoes, two pools of up to 50 individuals
were tested per trap.

Sampling of mosquitoes from selected localities was performed in 2017 and 2018 in
four sampling periods, one in June, two in July, and one in August. A total of 80 samples
were collected and tested for WNV presence.

2.4. Surveillance Targeting Dead Wild Birds

Dead wild birds found in the natural environment, shot targeted wild birds, and
tracheal/pharyngeal swabs of wild birds, live-trapped during the ringing and other ac-
tivities of bird protection societies, particularly the resident species most susceptible to
infection, were collected in the period from June to December 2017 and 2018 and tested for
the presence of WNV genomic RNA.

2.5. Blood Samples

Blood serum samples from cattle, pigs, and chickens were collected at several locations
in South Banat District. The blood of domestic animals was sampled on industrial farms
and backyard holdings. Sampling was performed at equal monthly intervals from March
to October in 2018 and March to October in 2019. To determine seroconversion, sera were
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tested for the presence of specific IgG antibodies against WNV using the ELISA test (ELISA
test INGEZIM West Nile Compac, INGENASA, Madrid, Spain).

2.6. WNV Genome Detection by Molecular Methods

Mosquito pools (up to 50 individuals in one pool) and wild bird samples (tissues and
tracheal swabs) were tested for WNV RNA presence by TaqMan-based one-step reverse
transcription real-time PCR (RT-qPCR) that amplified both lineage 1 and 2 strains of the
virus, as described elsewhere [21].

2.7. Spatiotemporal Analysis

WNV infections in humans, animals, and mosquitoes were analyzed for both space
and time patterns using the following analytical approaches: kernel density analysis
(Parzen windows-cores), incremental spatial autocorrelation (Moran’s I test), hot spot
analysis (Getis-ord GI* statistics), and space–time aggregation (temporal, spatial, and
spatio-temporal analysis of clusters using Kulldorff spatial scan statistics).

2.7.1. Kernel Density Estimation

Kernel density estimation (KDE) is a method used to create “heat maps”, commonly
applied in epidemiological research of WNF and other diseases [16,30–33]. KDE was per-
formed using the spatial analysis/kernel density tool of the ArcGIS desktop 10.5 software
package. The KDE tool was used to calculate the density of cases of WNV infection in
the immediate vicinity (neighbourhood) around each entity (point object on the map that
represents a registered case of WNV infection). It takes known quantities, i.e., the numbers
of WNV infections, and extrapolates them across the landscape based on the quantity that
is measured at each location and the spatial relationship of the locations of the measured
quantities. The KDE technique creates a smoothed map of the density of cases of WNV
infections at each location where positive cases were registered. The output raster surface
is transformed into contour maps to allow for overlay onto other geographic layers. Al-
though different sizes of kernels were analyzed, results for 660 m are reported, which was
estimated as a standard distance by ArcGIS software itself. It is the default search radius
(bandwidth) based on Silverman’s rule-of-thumb bandwidth estimation [33–35].

2.7.2. Spatial Autocorrelation Analysis

Spatial autocorrelation analysis is a precondition for the in-depth spatial analysis of
WNV infections. This method included global autocorrelation and local autocorrelation.
The global autocorrelation was used to analyze whether the attributes specified in the study
area were relevant at the level of the entire South Banat District, while the latter accurately
determines where such attributes are gathered and reveals the spatial distribution pattern
and the approximate spatial aggregation range. Moran’s index I, which ranges from −1 to
+1, is an indicator of global autocorrelation analysis. A value close to 1 or to –1 indicates,
respectively, a strong positive or negative spatial autocorrelation. Moran’s I can be tested
based on Z-score and p-value, to determine whether or not the null hypothesis, that the
incidence of WNV infection was randomly scattered in space, should be rejected [36,37].

2.7.3. Hot Spot Analysis

Hot spot areas are concentrations of incidents within a limited geographical area that
appear over time. Hot spot analysis is also statistically known as cluster analysis. The
most intuitive type of cluster is when only the location of incidents is considered. Thus, the
location with the highest number of incidents is considered to be a hot spot [38]. In our
investigation, one cluster represented a group, i.e., a series of cases of WNV infection in
one geographical area in different animal species and humans.

The hot spot analysis was based on a statistical calculation known as Getis-ord Gi *
statistics. Getis-ord Gi * statistics are based on the calculation of z-statistics and p-values,
where z-statistics determine whether the examined values of a particular attribute of a
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cluster entity are above or below the average values at the level of the whole geographical
area (necessary to determine “hot” or “cold” points), while p-values determine whether
the grouping of units into clusters is the result of a random event or a consequence of
some external influence, a phenomenon that conditions the grouping. Hot spot analysis
was performed using the cluster mapping/spatial statistics tools of the software package
ArcGIS desktop 10.5 [39–42].

2.7.4. Space–Time Aggregation

The most sophisticated space–time analyses were conducted using SaTScan v9.6., a
method that has been previously used in many WNF studies to analyze spatial, temporal,
and spatio-temporal data using spatial, temporal, or spatio-temporal scanning. It detects ge-
ographical areas where WNV cases are grouped more densely than their usual distribution.
Within the cluster, all cases of the disease are associated with the same epidemic [15,43–47].
An important feature of spatial scanning is the ability to detect cluster locations and make
inferences about clusters, that is, locating the geographic areas of the most likely clusters
and the secondary clusters [48].

3. Results
3.1. Epidemiological Characteristics of WNV Outbreaks in 2017, 2018, and 2019
3.1.1. Descriptive Statistics

A total of 68 human clinical, laboratory-confirmed cases of WNV infection were
included in this study. The case number of WNV in humans maintained a seasonal
variation in the study period, ranging from 0.24 to 2.48 cases per 100,000 person-months at
risk. We estimated that the average incidence rate of WNV in 2017 was 0.24 per 100,000
person-months at risk, whereas, in 2018, the average incidence rate was 2.48 per 100,000
person-months at risk, and in 2019 it was 0.58 per 100,000 person-months at risk. The
period prevalence in 2017 was 0.0017%, while in 2018 it was 0.017%, and in 2019 it was
0.0041%. The period prevalence in 2018 in populated areas ranged from 0.0028% to 0.3636%
(Supplementary Figure S10). The largest number of registered WNV cases was recorded
in Pančevo, a total of 18 cases. The highest prevalence of WNV infection was recorded in
the villages of Mali Žarm and Dupljaja, 0.36% and 0.10%, respectively. Figure 2 shows the
distribution of clinical cases of WNV infection and the epidemiological characteristics of
the WNV human outbreaks in 2017, 2018, and 2019 in the South Banat District.
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3.1.2. Seasonality

The distribution of human cases of WNV infection displayed a clear seasonal pattern
(Figure 3). During the WNV transmission season in 2017, human cases of WNV infection
were recorded between June to September, whereas in 2018 they occurred between June to
October (Figure 3). The highest number of human cases were recorded in 23 August 2018 in
total. In the following transmission season in 2019, although a significantly smaller number
of cases of infection were registered, the appearance of the disease was also seasonal. Thus,
human cases of WNV infection were recorded between July to August 2019, and the highest
number of cases was recorded in July, i.e., seven in total (Figure 2 panel d).

The average ambient and average ambient maximum temperature of the two weeks
before the first WNV human case was detected in 2017 were 22.5 ◦C and 28.26 ◦C, respec-
tively, in 2018 were 20.84 ◦C and 25.96 ◦C, respectively, and in 2019 were 23.35 ◦C and
26.61 ◦C, respectively. The average ambient and average ambient maximum temperature
of the two weeks before human cases terminated ranged between 23.35 ◦C to 26.05 ◦C
and 26.61 ◦C to 32.31 ◦C, respectively. The highest incidence was observed when the
two-week average ambient and average ambient maximum temperature were 26.73 ◦C
and 26.73 ◦C, respectively. Negative binomial regression analysis was used to estimate
relationships between registered WNV human cases and monthly average ambient temper-
atures, i.e., minimum average temperatures, average temperatures, and maximum average
temperatures. Regression analysis proved a positive association between environmental
temperature, the number of WNV-positive mosquito pools, and the registered number of
WNV human cases. The estimated negative binomial regression coefficients for the model
predictors variables, i.e., average minimum temperature, and WNV-positive mosquito
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pools, were positive and significant, indicating that these factors are significant predic-
tors of infection in humans. The negative binomial coefficients for the minimum average
temperature and WNV-positive mosquito pools were βmin_t0 = 0.251 and βmosq.1 = 0.335,
respectively, bound with 95% Wald confidence interval (CI) of 0.072 to 0.431 and 95% CI
of 0.029 to 0.641, respectively. The estimated p-values were.006 and.032, respectively. The
results showed that for a one-unit change in the predictor variables, the difference in the
logs of expected counts of the WNV human cases is expected to change by the respective
regression coefficient, provided that the other predictor variables in the model are held
constant. Concerning the incidence rate ratio (IRR) the exponential value of the regres-
sion coefficient βmin_t0 for minimum average temperature indicates that every increase
of average minimum temperature for one degree of celsius would increase the incidence
rate of WNV infection in humans by a factor of 1.286 or 28.6% and for predictor variable
WNV-positive mosquito pools the exponential value of the coefficient βmosq.1 indicates
that every increase of registered WNV-positive mosquito pools by one would increase the
incidence rate of WNV infection in humans by a factor of 1.398 or 39.8%, provided that
the parameter of the minimum average temperature is unchanged. The negative binomial
regression coefficients for the average temperature and WNV-positive mosquito pools were
βaverge_t0 = 0.223 and βmosq.2 = 0.331, respectively, bound with 95% CI of 0.055 to 0.392
and CI of 0.028 to 0.635, respectively, while for the average maximum temperature and
WNV-positive mosquito pools were βmax_t0 = 0.219 and βmosq.2 = 0.303, respectively, bound
with 95% CI of 0.043 to 0.395 and 95% CI of 0.004 to 0.602, respectively.
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The results of the regression analysis show that fluctuations, ie changes in the water
level of the Danube, affect the number of registered cases of WNV infection, both in humans
and mosquitoes. The estimated negative binomial regression coefficients for the minimum,
average, and maximum water level, were negative and significant, which practically means
that as the river level decreases, the number of registered cases increases. The following
values of regression coefficients concerning the variables minimum water level, average
level and maximum water level were obtained: βwater_min = −0.021 (95% CI −0.038 to
−0.003, p-value 0.02) βwater_average = −0.0019 (95% CI −0.034 to −0.005, p-value 0.009) and
βwater_max = −0.013 (95% CI −0.023 to 0.003, p = 0.012).

Regression analysis proved a positive association between environmental temperature
and the number of WNV-positive mosquito pools. The estimated negative binomial
regression coefficient was positive and significant, indicating that this factor is a significant
predictor. However, the precipitation was negative and insignificant, so as such it was
excluded from the model. Instead of this predictor, the model includes the water level
of the Danube as a predictor. The following values of the coefficients were obtained by
regression analysis: βmin_t0 = −0.184 (95% CI −0.005 to 0.364, p = 0.04) βwater_max = −0.013
(95% CI −0.026 to −0.001, p = 0.04). The estimated negative binomial regression coefficient
for predictor—the water level of the Danube was negative and significant, indicating that
this factor is a significant predictor.

The model was validated by the cross-validation method with satisfactory results.
For the sample test that included 45% of the data, Spearman’s rank correlation coefficient,
ρ was 0.708 (p = 0.033), while Kendall’s compliance coefficient, τ was 0.591 (p = 0.045). For
validation purposes, the data on the number of registered WNV human cases of infection
in humans, data on WNV-positive mosquito pools, and temperature were used. For the
training sample with 55% of the data the correlation coefficient ρ was 0.628 (p = 0.029)
and Kendall’s τ was equal to 0.557 (p = 0.018). By comparing the actual values of the
WNV human cases and the values predicted by the model were calculated bias, mean
average error (MAE), normalised MAE, mean square error (MSE) I root mean square error
(RMSE). The following values were obtained: bias = 1.53, MAE = 2.07, NormMAE =0.64,
MSE = 16.03, and RMSE = 4.08.

More information on the analysis of the effects of environmental temperatures on
the risk of WNV transmission is available in the Supplementary Material (Supplementary
Tables S1–S15).

3.1.3. Geographical Distribution and Abundance of WNV-Positive Mosquitoes

Data in Figure 4 displays the distribution of WNV-positive mosquito pools and the
distribution of human cases between 2010 and 2019. Mosquitoes were surveilled for the
presence of WNV in 2014, 2015, 2017, and 2018. During the 2017 and 2018 surveillance
seasons, significantly higher numbers of WNV-positive mosquito pools were registered,
especially in 2018. In 2017, the virus was detected in mosquitoes at a total of 5 out of
10 locations, while in 2018, circulation was proven at 9 out of 10 tested locations. The
frequency of WNV-positive mosquito pools was used to create kernel density maps for
each year (2017 and 2018) and these were compared with kernel density maps of WNV
infection in humans and animals (Figure 4 panels (e) and (f)). By comparing clusters, we
noticed a positive match between the clusters of WNV-positive mosquitoes and the clusters
of registered human and animal cases of infection, shown in Figure 4 panels (c) and (d).
Moreover, the clusters of WNV-positive mosquito pools, which were classified by the
KDE technique into the category of very high-density clusters, coincided with the clusters
of WNV infection in humans and animals, which were also categorized as high-density
clusters or very high-density clusters. Matches were not observed only in those mosquito
sampling localities where there were no domestic animals, and that were distant from
populated areas. The increased higher numbers of registered human and animal cases
correspond to the areas with a higher density of WNV-positive mosquito pools.
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3.1.4. The Water Level of the Danube and Tamiš Rivers

Comparison of changes in water levels in the Danube and Tamis rivers and cases of
WNV showed that changes in water levels in rivers were accompanied by a change in the
number of registered clinical cases of WNV in humans. Except in 2016, every increase
in water levels and a sharp decline in river levels was accompanied by a consequent rise
in the number of sick people. An identical pattern was observed for cases of infection in
tested animals (Figure 5). It was notable that animal cases of infection appear after the end
of the period of decline of previously high water levels. (Figure 6).

For more information on the analysis of effects of river water levels and precipi-
tation on the risk of WNV transmission see Supplementary Material (Supplementary
Tables S15–S19).
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3.1.5. Results of Seroconversion Tests in Domestic and Wild Animals

The study of the seroprevalence of WNV in domestic animals showed high prevalences
of infection in domestic animals, especially those raised on rural holdings in an extensive
manner (Figure 7). The highest level of seroprevalence was recorded in cattle in 2018,
followed by pigs raised on rural holdings, 45.71%, and 40.74%, respectively. Pigs reared on
rural holdings are 7.79 times more likely to be infected with WNV than pigs on industrial
farms. This odds ratio (OR 7.79, 95% CI 2.12 to 28.57) means the type of production
was recognized as an exposure risk factor, and this category of animals is more prone to
infection. In 2018, chickens kept on rural holdings also had a high prevalence of infection
(p = 39.29%), while no case of infection was detected in any chicken kept on industrial
farms. Chickens reared on rural holdings are more likely to be infected with WNV than
chickens on industrial farms.
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Figure 7. Seroprevalences showing (a) PCR detection of West Nile fever (WNV) in wild animals and mosquitoes and (b)
WNV infection in domestic animals, 2018. INT—intensive farm production; EXT—extensive production on rural holdings.

3.2. Results of Spatiotemporal Analysis
3.2.1. Cluster Analysis

The global spatial autocorrelation analysis of the average annual incidence of WNV
infection in South Banat District in 2018 suggested that a significant positive spatial auto-
correlation existed. By calculating the global autocorrelation, we determined the relevance
of attributes at the level of the entire study area, whereby a perimeter of 23.3 km indicates
distances where spatial processes that promote clustering are most pronounced. As shown
in Figure 8 panel (a), the test results indicate that a statistically significant grouping of
clusters occurs in a diameter of 23.3 km (Global Moran’s I test: the first peak of z-score 2.40,
p-value of 0.016 for a distance of 23.3 km). The results of the hot spot analysis and purely
spatial cluster analysis showed a variation in the spatial distribution of WNV cases in
South Banat County, with most high-risk clusters located nearby water streams (Figure 8).
Red, orange, and light orange dots on panels (b), (c), and (d) represent clusters that are
were located as “hot” spots, i.e., they form a group of clusters in which grouping is not the
result of a random event but occurs as a result of environmental risk factors influence. The
level of statistical significance of cluster grouping was graded in the interval of 90–99%.
Yellow dots represent clusters whose grouping is the result of a random event and cases
are not interconnected.
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analysis of infection in humans and animals.

3.2.2. Space–Time Aggregation

Kulldorff’s spatial cluster analysis indicated that the cases of WNV were not randomly
distributed in space and time in 2017, 2018, or 2019. A total of six significant purely
spatial clusters (Table 1), one purely temporal cluster (Table 2), and two significant and
one secondary spatio-temporal clusters were discovered (Table 3). The most likely spatial
clusters were mainly found in the southwestern part and central part of South Banat
District, nearby main water streams and dense vegetation (the Danube and Tamiš rivers,
and Ponjavica Nature Park), including 18 settlements. For more information on spatial
cluster analysis see Supplementary Material (Supplementary Figures S4–S9).

Table 1. SatScanTM purely spatial cluster analysis. The clusters of WNV cases detected by using purely spatial cluster
statistics.

Cluster * Total
Locations

Radius,
km Population # WNV

Cases
Expected

Cases O/E RR LLR p-Value

1 5 9.16 788 84 4.26 19.74 37.63 193.78 <1 × 10−17

2 18 27.90 1907 39 10.30 3.78 4.60 25.92 2.1 × 10−10

3 5 12.67 29 7 0.16 44.28 46.12 19.83 5.7 × 10−8

4 4 12.82 777 17 4.20 4.05 4.38 11.47 0.00012
5 8 13.23 936 16 5.05 3.17 3.39 7.86 0.0035
6 3 15.93 38 3 0.20 14.73 14.97 5.30 0.037

O/E—observed expected ratio; RR—relative risk; LLR—log-likelihood ratio; #-Number of West Nile virus cases. * For territorial affiliation
see Supplementary Material (Supplementary Figure S4).
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Table 2. SatScanTM purely temporal cluster analysis. The clusters of WNV cases detected by using purely temporal cluster
statistics.

Cluster * Total Locations # WNV Cases Expected Cases O/E RR LLR p-Value

1 all 76 2.78 27.35 48.21 197.04 0.001

O/E—observed expected ratio; RR—relative risk; LLR—log-likelihood ratio; #-Number of West Nile virus cases. * For territorial affiliation
see Supplementary Material (Supplementary Figures S4 and S6).

Table 3. SatScanTM spatio-temporal cluster analysis. The clusters of WNV cases detected by using spatio-temporal cluster
statistics.

Cluster * Total
Locations

Radius,
km Start Date End Date Population # WNV

Cases
Expected

Cases O/E RR LLR p-Value

1 6 12.70 24 September
2018 15 October 2018 1023 48 0.07 677.35 939.16 272.35 1 × 10−17

2 3 5.11 5 September 2018 20 December 2018 680 39 2.85 13.70 17.42 70.09 1 × 10−17

3 6 15.59 17 August 2018 25 September
2018 1207 6 1.12 5.35 5.51 5.26 0.65

O/E—observed expected ratio; RR—relative risk; LLR—log-likelihood ratio; #-Number of West Nile virus cases * For territorial affiliation
see Supplementary Material (Supplementary Figure S6).

4. Discussion

This research revealed the epidemiological characteristics of WNV infection in the
South Banat District. We have analyzed the changes occurring concerning the spatial,
temporal, and spatiotemporal trends during the study period between 2017–2019, using
the GIS spatial analysis technique, scan statistics, descriptive analysis of WNV case data,
and statistical modeling.

Our study confirmed that the most important spatial risk factors for WNV infection in
South Banat District were the nearness of waters (water streams, standing waters, and the
network of irrigation canals), and proximity to WNV-positive mosquito sites. In addition,
proximity to wild bird habitats and the presence of dense vegetation cover were important
risk factors. The graphical representation of the land cover of the South Banat District is
shown in Supplementary Materials (Supplementary Figures S8 and S9). Thematic maps,
created using the above-mentioned risk factors, identified WNV hot spot locations in all of
the analyses. Areas that were identified as primary and secondary hot spots were mostly
located nearby water streams, in the southwestern or central parts of the South Banat
District.

We found the main risk factors of the epidemic in humans in 2018 were the high
environmental temperatures and the sharp decline of previous maximum water levels in
July and August, i.e., the peak of the epidemic correlated with the lowest water levels of
the Danube and Tamis rivers (monthly average minimum and monthly average maximum
temperature: 17.8 ◦C and 31.7 ◦C respectively, and river water levels of the Danube and
Tamis rivers of 236 mm and 238 mm, respectively) [49].

However, although a similar pattern of the interrelationship of these risk factors with
the peak of the epidemic was observed in 2017 and 2019, the number of registered human
cases was significantly lower than in 2018. At the peak of the epidemics in August 2017
and 2019, only three and five cases of the disease were registered, while in 2018, 23 cases
were registered. In terms of hydrology, 2017 and 2019 differed from 2018 in that in 2017
and 2019, no extended periods of maximum water levels were registered, preceding dry
summer periods with minimum water levels; this was not the case in 2018.

The results of negative binomial regression analysis show that temperature is a signifi-
cant risk factor, i.e., a predictor of the appearance of mosquitoes infected with WNV. At the
time of the onset of the disease in 2018, the average ambient and average ambient maximum
temperature ranged between 20.84 ◦C to 23.35 ◦C and 25.96 ◦C to 28.26 ◦C, respectively. The
highest incidence was observed when the two-week average ambient and average ambient
maximum temperature were 26.73 ◦C and 26.73 ◦C, respectively. It is important to note
that 2018 and 2019 were the warmest years in the history of meteorological measurements
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in Serbia. The prolongation of the warmest summer period and the warmer autumn period
coincides with the early spring migration of birds, thus extending the time duration for
infection of mosquitoes with WNV, which increases the chances of transmitting the disease
to humans and animals [50]. High environmental temperature increases the risk of WNV
transmission [51,52]. High environmental temperature promotes higher growth rates of
mosquitoes and makes the extrinsic incubation period shorter; the gonotrophic cycle (the
time required to produce eggs after a blood meal) is also shorter [53,54]. Based on negative
binomial regression analysis, we found that variations in the number of registered WNV
human cases can be partially explained and related to temperature variations and the
increased number o WNV-positive mosquito pools. These two factors have proven to be
good predictors of the growth in the number of infected people. On the other hand, the
declining level of the Danube also shows a positive association with the increase in the
number of patients and the number of registered WNV-positive mosquito pools.

For more information on water levels of the Danube and Tamis rivers, and temperature
regimes see Supplementary Materials (Supplementary Tables S1–S4 and Figures S1 and S2).

Besides climate factors and analysis of seasonality, in this study, the risk factors were
also evaluated at spatial scales, based on the primal assumption that the flight range of
mosquitoes is crucial for transmission and mosquitoes are the main transmission force. The
landscape of the South Banat District, such as vegetation, soils, wetlands, and topography,
provides favorable conditions for both mosquito and wild bird multiplication. The high-
risk zones include plenty of agricultural areas, farms, rural holdings, wetlands [55], and
urban areas with inland marshes and small forest zones [52].

An important element for performing either risk analysis or hot spot analysis is
determining the radius of the grouping, i.e., the boundaries (perimeter) of the geographical
area on which the grouping of entities into clusters is analyzed and which determines their
significance. The hot spot analysis for the numbers of cases indicated that the disease is
most prevalent in locations nearby water streams. By comparing the grouping of clusters,
we noted a positive match between the clusters of WNV-positive mosquitoes and the
clusters of registered human and animal cases of infection. The clusters of WNV-positive
mosquitoes, which were classified by the KDE technique into the category of very high-
density clusters, coincided with the clusters of WNV infection in humans and animals,
which were also categorized as very high-density clusters or high-density clusters.

Possible factors that might influence such a wide grouping (grouping radius) of sta-
tistically significant clusters of WNV occurrence in South Banat District are the intensity
of prevailing winds and the abundance of running and standing waters. Winds have a
great effect on mosquito dispersion. Kay and Farrow reported flight distances of 648 km
for C. annulirostris as a result of wind blow [56]. Other authors have reported the results of
similar research where substantial distances were identified, i.e., 200 km for Culex tritae-
niorhynchus [57], 280 km for Anopheles pharoensis [58], 500 km for C. tritae-niorhynchus [59],
740 km for A. vexans [60], and even 850 km for Cx. pipiens pipiens [61]. Verdonschota and
Besse-Lototskaya reported mean flight distances of 10.97 km for genus Culex [62].

South Banat District is flat and characterized by a high frequency of winds. The
highest frequency of wind occurrence is the southeast wind (košava) which occurs at 306‰,
followed by the northwest wind with 255‰, while the lowest frequency of occurrence is
the north wind 48‰ and the northeast 44‰. The prevailing southeast wind most often
occurs in autumn 368‰, and least often in summer 196‰. The highest frequency of
silences (Calme) is 143‰ in May and the lowest in November 51‰. As for the wind
speed, the highest average annual speed for the area has the wind that blows from the
east-southeast direction 3.3 m/s, and the lowest south-southwest with a speed of 1.7 m/s.
The graphical representation of the dominant winds is shown in Supplementary Materials
(Supplementary Figure S3 and Table S20).

In the study area, a total of six significant purely spatial clusters, one purely temporal
cluster, and two significant spatio-temporal and one secondary spatio-temporal clusters
were discovered. In most situations, except in 2017, the human cases were preceded by
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the detection of WNV in animals and mosquitoes. In 2017, the detection of WNV-positive
mosquitoes preceded the registration of the first cases of infection in humans by 55 days,
while in 2018, this period was 9 days. In sentinel animals in 2017, contact with the virus was
detected three months and 3 days after the registration of the first human case. However,
in 2018, contact with the virus was detected 9 days before human infection, and in 2019, a
full two months earlier.

To better understand the history of WNV epidemics in the study area, we additionally
used the data provided by ECDC [9] and analyzed the number of infected people in the
designated geographical area in the period between 2012–2019. It was notable that after
the sudden appearance of the disease in 2012 and the further increase of the epidemic in
2013, there was a significant decrease in the registered cases in the following year, as was
the case in 2019. The numbers of human cases per year were as follows: n = 10 in 2012,
n = 32 in 2013, n = 19 in 2014, n = 7 in 2015, n = 4 in 2016, n = 5 in 2017, n = 51 in 2018 and n
= 12 in 2019. The mean of the WNV case numbers was 17.5 cases per year in the period.
The differences of the cases from the mean were: −7.5 in 2012, 14.5 in 2013, 1.5 in 2014,
−10.5 in 2015, −13.5 in 2016, −12.5 in 2017, 33.5 in 2018, and −5.5 in 2019. This decline in
human cases could be partly explained if many people had already been in contact with
the virus and earned immunity, which made them less susceptible to the virus [21] but this
assumption needs additional research. Variations that have emerged over the last decade
might also be explained if birds re-introduce WNV into South Banat District from year to
year.

Our research indicated that in creating a surveillance model for WNF, the primary
concern is to consider the behavior and the requirements of every element in the disease
transmission chain. Climate factors might be the main determinant of WNV distribution
and predictors of endemicity, but in other situations, climate factors are not sufficient to
explain the observed distribution of WNV cases. Precipitation and water levels of main
rivers have an important influence on the mosquito abundance on main rivers, local water
streams, and especially standing waters. Water abundance also greatly affects the habitats
of wild birds, which are important for maintaining the virus in nature. The epidemic
process is conditioned by the action of several necessary factors in the disease. Winds
were identified as a likely risk factor, taking into account wind effect on vector dispersion.
However, each of these factors is not enough to lead to the disease on its own, so each
risk assessment and prediction is conditioned by observing and researching all these
risk factors together. Taking into account the substantial presence of domestic animals
raised in extensive production mode, our study leads us to the conclusion that the WNV
surveillance system, besides horses and chickens, should be augmented by surveilling the
virus in domestic animals kept on rural holdings, particularly cattle, pigs, and chickens.
Since these animals live in conditions of very low levels of biosecurity measures, they are
significantly more exposed to the vectors and WNV than domestic animals on industrial
farms. Animals on rural holdings are relatively easy to trace and sample and do not have
high surveillance costs. WNV, despite the decline in the number of human cases in 2019,
remains a threat to the human population in the South Banat District. For the disease to be
successfully monitored and detected in time, it is necessary to conduct constant monitoring
of the presence of the virus in natural reservoirs and sentinel species, monitor and analyze
climatological risk factors and be especially focused on indicators of the presence of the
virus in nature.

5. Conclusions

We found the main risk factors of the epidemic in 2018 were the high environmental
temperatures and the sharp decline of previous maximum water levels in July and August.
The temperature is a significant risk factor and predictor of WNV infection in humans and
mosquitoes. We found that variations in the number of registered WNV human cases can
be partially explained by temperature variations and associated with the increased number
of WNV-positive mosquito pools, which proved to be very significant in this study and
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leads us to the conclusion that it is important, as part of the surveillance program in the
South Banat District, to place special emphasis on monitoring the presence of WNV in
mosquitoes. It is important to emphasize that almost all cases of infection in humans were
preceded by the detection of WNV-positive mosquitoes. Using statistical models, such as
regression models, it is possible to quantify risk factors, especially climatic factors, and
identify those that are not significant as indicators to be monitored. The WNV high-risk
zones include plenty of agricultural areas, farms, rural holdings, wetlands, and urban
areas with inland marshes and small forest zones. The hot spot analysis for the numbers
of cases indicated that the disease is most prevalent in locations nearby water streams.
By comparing the grouping of clusters, we noted a positive match between the clusters
of WNV-positive mosquitoes and the clusters of registered human and animal cases of
infection. In most situations, the human cases were preceded by the detection of WNV
in animals and mosquitoes. The epidemic process is conditioned by the action of several
necessary factors in the disease. Winds were identified as a likely risk factor, taking into
account wind effect on vector dispersion. However, each of these factors is not enough to
lead to the disease on its own, so each risk assessment and prediction is conditioned by
observing and researching all these risk factors together. Taking into account the substantial
presence of domestic animals raised in an extensive production way, our study leads us to
the conclusion that the WNV surveillance system, besides horses and chickens, should be
augmented by surveilling the virus in domestic animals kept on rural holdings, particularly
cattle, pigs, and chickens. For the disease to be detected in time, it is necessary to conduct
constant monitoring of the presence of the virus in natural reservoirs and sentinel species.
Climatic risk factors should be constantly monitored and analyzed.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/ani11102951/s1, Figure S1: Monthly temperatures in 2017, 2018, and 2019 in South Banat
District, Figure S2: Precipitation and river water levels on the territory of South Banat District,
Figure S3: The wind rose of prevailing winds in South Banat District, Figure S4: Spatial clusters
detected by spatial scan statistic, Figure S5: Temporal cluster detected by space-time scan statistic,
Figure S6: Spatiotemporal clusters detected by space-time scan statistic, Figure S7: Spatiotemporal
cluster detected by space-time scan statistic, Figure S8: Distribution of registered cases of WNV
infection in humans (blue), domestic animals (red), in 2017, 2018, and 2019 and mosquitoes (green) in
2017 and 2018 (distribution of cases shown on the thematic map of land cover), Figure S9: Distribution
of hot spots of WNV cases in humans (blue) and domestic animals, Figure S10: Appirent prevalence
of WNV human cases in stady period. (a) Box plot of WNV prevalence in 2017, (b) Dot plot of WNV
prevalence in 2017, (c) Box plot of WNV prevalence in 2018, (b) Dot plot of WNV prevalence in 2018,
(e) Box plot of WNV prevalence in 2017, (f) Dot plot of WNV prevalence in 2017 (red), in 2017, 2018,
and 2019 in 2017and 2018 (distribution of cases shown on the thematic map of land cover); Table S1:
Maximum recorded temperatures in South Banat district (2013–2020), Table S2: Maximum average
recorded temperatures in South Banat district (2013–2020); Table S3: Average recorded temperatures
in South Banat district (2013–2020); Table S4: Minimum recorded temperatures in South Banat district
(2013–2020), Table S5: The number of registered WNV human cases and the movement of average
monthly temperatures in the examined period between 2017 and 2019, Table S6: The goodness of fit
statistics of the negative binomial regression model (Dependent Variable: WNV human cases)a, Table
S7: Lagrange multiplier test of the negative binomial regression model (Dependent Variable: WNV
human cases), Table S8: Omnibus test of the negative binomial regression model (test for overall data
improvement with the negative binomial model (Compares the fitted model against the intercept-
only model. Dependent Variable: WNV human cases), Table S9: Results of a negative binomial
regression analysis of the influence of average minimum environmental temperature fluctuations
on the number of registered cases of WNV in humans, Table S10: Results of a negative binomial
regression analysis of the influence of average environmental temperature fluctuations on the number
of registered cases of WNV in humans, Table S11: Results of a negative binomial regression analysis
of the influence of average maximum environmental temperature fluctuations on the number of
registered cases of WNV in humans, Table S12: The goodness of fit statistics of the negative binomial
regression model (Dependent Variable: WNV-positive mosquito pools)a, Table S13: Omnibus test
of the negative binomial regression model (test for overall data improvement with the negative
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binomial model (Compares the fitted model against the intercept-only model. Dependent Variable:
WNV-positive mosquito pools), Table S14: Results of a negative binomial regression analysis of the
influence of environmental temperature fluctuations and precipitation on the number of registered
WNV positive mosquito pools, Table S15: The amount of precipitation in the period from 2013 to
2020, Table S16: Results of a negative binomial regression analysis of the influence of the minimum
the Danube river water level fluctuations on the number of registered cases of WNV in humans,
Table S17: Results of a negative binomial regression analysis of the influence of the Danube river
average water level fluctuations on the number of registered cases of WNV in humans, Table S18:
Results of a negative binomial regression analysis of the influence of the Danube river maximum
water level fluctuations on the number of registered cases of WNV in humans, Table S19: Results
of a negative binomial regression analysis of the influence of the Danube river maximum water
level fluctuations and average minimum environmental temperatures on the number of registered
WNV positive mosquito positive pools, Table S20: Distribution and length of the period of blowing
of the prevailing winds in hours of blowing. Climatology, land cover of South Banat district, and
statistical analyses on the effects of air temperature fluctuations and river water levels on the number
of registered cases of WNV in humans and mosquitoes.
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