PHYSICAL CHEMISTRY 2021

SPECIFIC METHODS FOR FOOD SAFETY AND QUALITY

September 22nd 2021, Vinča Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia

PROCEEDINGS

SPECIFIC METHODS FOR FOOD SAFETY AND QUALITY

7th WORKSHOP: SPECIFIC METHODS FOR FOOD SAFETY AND QUALITY

September 22nd, 2021, Belgrade, Serbia

is an online satellite event of

PHYSICAL CHEMISTRY 2021

15th International Conference on Fundamental and Applied Aspects of Physical Chemistry

Organized by

VINČA INSTITUTE OF NUCLEAR SCIENCES-NATIONAL INSTITUTE OF THE REPUBLIC OF SERBIA Vinča – Belgrade, Serbia

in co-operation with THE SOCIETY OF PHYSICAL CHEMISTS OF SERBIA

Held under the auspices of the

MINISTRY OF EDUCATION, SCIENCE AND TECHNOLOGICAL DEVELOPMENT

Organizing Committee

Chairman Branislav Nastasijević (Serbia)

Members Milovan Stoiljković (Serbia) Sandra Petrović (Serbia) Andreja Leskovac (Serbia) Tamara Lazarević-Pašti (Serbia) Neda Đorđević (Serbia) Vojislav Stanić (Serbia)

International Scientific Committee

Chairman Mirjana Čolović (Serbia)

Members Pierre-Michel Adam (France) Giovanna Marazza (Italy) Cecilia Cristea (Romania) Goran Gajski (Croatia) Klemen Bohinc (Slovenia) Polonca Trebše (Slovenia) Evgeniya Sheremet (Russia) Andreja Leskovac (Serbia) Sandra Petrović (Serbia) Aleksandra Bondžić (Serbia) Ana Vujačić Nikezić (Serbia)

PHYSICAL CHEMISTRY 2021

15th International Conference on Fundamental and Applied Aspects of Physical Chemistry

7th Workshop

SPECIFIC METHODS FOR FOOD SAFETY AND QUALITY

September 22nd, 2021, Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, Belgrade, Serbia

PROCEEDINGS

BELGRADE, SERBIA 2021

7th WORKSHOP: SPECIFIC METHODS FOR FOOD SAFETY AND QUALITY

PROCEEDINGS

Publisher VINČA INSTITUTE OF NUCLEAR SCIENCES-NATIONAL INSTITUTE OF THE REPUBLIC OF SERBIA Vinča - Belgrade, Serbia

> *Editors* Dr Mirjana Čolović Dr Sandra Petrović

Reviewers Dr Mirjana Čolović Dr Sandra Petrović Dr Andreja Leskovac Dr Tamara Lazarević-Pašti Dr Neda Đorđević Dr Aleksandra Bondžić Dr Ana Vujačić Nikezić

Design Dr Andreja Leskovac

Printed by Apollo Plus d.o.o., Beograd

> Print run 30 copies

ISBN 978-86-7306-163-4

BELGRADE, SERBIA 2021

CONTENTS

SESSION A: SPECIFIC METHODS IN FOOD QUALITY CONTROL

PL A1	ELECTROANALYTICAL METHODS FOR FOOD SAFETY AND QUALITY CONTROL ASSESSMENT C. Cristea, O. Hosu, B. Feier and M. Tertis			
IL A1	 A1 PRECISE TESTING OF PESTICIDES IN FOOD USING THE SCIEX TRIPLE QUADTM 7500 LC-MS/MS SYSTEM- QTRAP[®] READY- HIGHLY SENSITIVE ANALYSIS OF MULTI-COMPOUND PANELS IN VARIOUS MATRICES FOR FOOD REGULATIONS D. McMillan, J. Stahl-Zeng, I. Moore, T. Biesenthal, J. Steed and W. Broer 			
IL A2	DEVELOPMENT OF NOVEL ANALYTICAL PLATFORMS FOR THE RAPID, POINT-OF-USE QUANTIFICATION OF MULTIPLE CONTAMINANTS IN FOOD SAMPLES G. Selvolini and G. Marrazza	10		
IL A3	APPLICATION OF GCE AND FTIR METHODS FOR THE DETERMINATION OF GLIADINS FROM WHEAT FLOUR V. Gojković Cvjetković, Ž. Marjanović-Balaban, D. Rajić and D. Vujadinović	16		
OP A1	ANALYSIS OF SPICE PAPRIKA POWDERS FROM SERBIAN MARKET V. Vasić, M. Radenković, M. Pavlović, J. Petrović, K. Nikolić, M. Momčilović and S. Živković	24		
PA1	VISUAL DETECTION OF QUERCETIN USING GOLD NANOPARTICLES M. Nemoda, M. Pavlović, M. Stoiljković and T. Momić	28		
PA2	ALUMINA-MODIFIED CARBON PASTE ELECTRODE FOR DETERMINATION OF TOTAL PHENOLIC CONTENT IN WINE T. Novaković, M. Pagnacco, P. Banković and Z. Mojović	32		
PA3	REVERSED-PHASE ULTA HIGH PERFORMANCE LIQUID CHROMATOGRAPHY ANALYSIS OF TRIAZINE PESTICIDES WITH ACYCLIC AND CYCLIC SUBSTITUENTS B. Salaković, S. Kovačević, M. Karadžić Banjac, J. Anojčić, L. Jevrić, S. Podunavac-Kuzmanović, S. Gadžurić and D. Antonović	36		
PA4	POLAROGRAPHY IN DETERMINATION OF RED WINE ANTIOXIDANT ACTIVITY S. Pejić, N. Đorđević, S. Gorjanović, F. Pastor, N. Todorović Vukotić, V. Tešević and S. B. Pajović	40		

SESSION B: FOOD SAFETY

IL B1	TOXICOLOGICAL PROFILE OF MARINE TOXIN DOMOIC ACID IN HUMAN BLOOD CELLS G. Gajski, M. Gerić, A-M. Domijan and B. Žegura			
IL B2	2 BACTERIAL ADHESION RATE ON FOOD CONTACT SURFACES K. Bohinc			
IL B3	33 CHITOSAN-COATINGS IN EXTENDING SHELF-LIFE OF APPLES N. Mavrič, K. Bohinc, R. Vidrih, K. Godič Torkar and M. Bavcon Kralj			
IL B4	 IMPACT OF GAMMA IRRADIATION ON AFLATOXIN B1 AND OCHRATOXIN A TOXICITY AM. Domijan, B. Mihaljević, K. Markov, J. Pleadin and A.M. Marjanović Čermak 			
IL B5	 TOXIC METALS CONTENT IN MUSCLE TISSUE OF COMMON CARP FROM LOCATIONS NEAR BELGRADE D. Jovanović, R. Marković, D. Šefer, M. Krstić, V. Stanić, D. Perić and M. Ž. Baltić 			
P B1	BIOWASTE-BASED CARBON MATERIAL FOR MALATHION REMOVAL FROM WATER A. Jocić, S. Brković and T. Lazarević-Pašti	75		
PB2	VISCOSE-BASED ACTIVATED CARBON MATERIAL FOR CHLORPYRIFOS REMEDIATION V.Milanković, S. Breitenbach, C. Unterweger, C. Fürst and T. Lazarević-Pašti	79		
P B3	 B3 ECO-FRIENDLY ACTIVATED CARBON AS AN ADSORBENT FOR DIMETHOATE REMOVAL FROM WATER V. Anićijević, S. Breitenbach, C. Unterweger, C. Fürst and T. Lazarević-Pašti 			
PB4	ANTIRADICAL ACTIVITY OF GRAPE SKIN EXTRACTS - THE EPR STUDY Đ. Nakarada, M. Stojanović, Z. Dajić-Stevanović and M. Mojović	87		
P B5	DETERMINING OF INDIGO CARMINE (E132) IN CANDY J. Senćanski, J. Maksimović, S. Blagojević and M. Pagnacco	91		
P B6	 B6 CYTOTOXIC ACTIVITY OF RED WINE ON HCT 116 AND PANC-1 CELL LINES J. Žakula, N. Đorđević, N. Todorović Vukotić, L. Korićanac, V. Kovačević and S.B. Pajović 			

P B7	GROSS ALPHA AND GROSS BETA ACTIVITY AND OSCILLATORY RESPONSE OF Sardina pilchardus FISH SPECIES FROM ADRIATIC SEA M. Janković, J. Maksimović, B. Janković, N. Bošković, M. Rajačić and D. Šuković		
P B8	THE COMPARISON OF HEAVY METAL CONTENT OF Sardina pilchardus SPECIES COLLECTED FROM BAY AND OPEN ADRIATIC SEA A. Pesić, D. Joksimović, M. Janković, N. Sarap, J. Maksimović and M. Pagnacco	103	
P B9	CYTOTOXICITY AND GENOTOXICITY OF Juniperus communis ESSENTIAL OIL AND POST-DISTILLATION WASTE B. Vasilijević, S. Cvetković, S. Đukanović, D. Mitić-Ćulafić, M. Jovanović and B. Nikolić	107	
P B10	ASSESSMENT OF CADMIUM MOBILITY IN BIOAPATITE AMENDED SOIL: LEACHING TESTS AND AVAILABILITY TO THE TOBACCO PLANT M. Jović, J. Marković, M. Šljivić-Ivanović and I. Smičiklas	111	
P B11	EFFECTS OF CHRONIC ORAL D-GALACTOSE TREATMENT ON GENERAL HEALTH STATUS IN MALE WISTAR RATS J. Martinović, I. Guševac Stojanović, M. Zarić, A. Todorović, F. Veljković, S. Pejić, Z. Stojanović, N. Mitrović, I. Grković and D. Drakulić	115	
P B12	A SINGLE DOSE OF MICROPLASTIC PARTICLES INDUCES CHANGES IN ORGAN WEIGHT OF MALE WISTAR RATS Z. Stojanović, A. Todorović, J. Martinović, N. Filipović, F. Veljković and I. Guševac Stojanović	119	
P B13	YELLOW GENTIAN ROOT EXTRACT AND ITS MONOTERPENE COMPOUNDS EXHIBIT ANTICANCER POTENTIAL A. Valenta Šobot, D. Drakulić, J. Savić, G. Joksić and J. Filipović Tričković	123	
P B14	GENOTOXICITY TESTING OF ACACIA HONEYS OF DIFFERENT GEOGRAPHICAL ORIGIN S. Petrović, A. Bondžić, B. Nastasijević and A. Leskovac	127	
P B15	CYTOGENOTOXICITY OF DEOXYNIVALENOL AND ZEARALENONE AM. Domijan, K. Hercog, M. Filipič, M. Sokolović, M. Gerić, G. Gajski and B. Žegura	131	

P B16	IN VITRO EVALUATION OF CHLORPYRIFOS CYTOTOXIC EFFECTS M. Čolović, A. Leskovac, A. Vujačić Nikezić and D. Krstić	135
P B17	EFFECT OF CHLORPYRIFOS-OXON ON MEMBRANE DAMAGE AND CELL VIABILITY D. Krstić, S. Petrović, A. Vujačić Nikezić and M. Čolović	139
P B18	INFLUENCE OF CAVITATION EFFECT ON STABILITY OF AFLATOXIN IN MILK V. Stanić, B.K. Adnadjević, S. Stefanović, S. Tanasković, B. Nastasijević, D. Jovanović and V. Živković	143
P B19	ANTIFUNGAL ACTIVITY OF <i>Gentiana lutea</i> EXTRACTS B. Nastasijević, M. Milutinović, V. Stanić and S. Dimitrijević- Branković	147

SESSION C:

FUNCTIONAL FOOD

IL C1	BIOACCESSIBILITY OF OLIVE-DERIVED NUTRACEUTICALS DETERMINED BY NOVEL STANDARDIZED PROTOCOLS K. Radić	151
OP C1	THE ROLE OF SUSTAINABLE AGRICULTURE IN PRODUCTION OF NUTRIENT DENSE FOOD V. Dragičević, M. Stoiljković, M. Simić, M. Brankov, M. Šenk, M. Dodevska and M. Tolimir	157
OP C2	PHENOLIC PROFILE OF PLUM WINES AND THEIR ACTIVITY IN THE PROTECTION AGAINST FREE RADICALS U. Čakar, N. Lisov, I. Plavšić, A. Petrović, D. Krstić, I. Stanković and B. Đorđević	164
P C1	ANTIMICROBIAL AND PRO-METABOLIC PROPERTIES OF Salvia officinalis AQUEOUS EXTRACT J. Filipović Tričković, B. Ćetenović, G. Joksić, Đ. Katnić, A. Krstić and A. Valenta Šobot	168
P C2	APPLICATION OF TOMATO (<i>S. lycopersicum</i>) WASTE PECTINS IN BIOGENIC SYNTHESIS OF SELENIUM NANOPARTICLES N. Golub, K. Radić, D. Anić, E. Galić, T. Vinković, M. Dutour Sikirić and D. Vitali Čepo	172
P C3	ANTIBACTERIAL ACTIVITY OF AQUEOUS-ETHANOLIC EXTRACTS OF <i>Alchemilla vulgaris</i> AND <i>Frangula alnus</i> COMBINED WITH STREPTOMYCIN S. Đukanović, S. Cvetković, T. Ganić, B. Nikolić, N. Tomić, D. Kekić and D. Mitić-Ćulafić	176

PC4	MODULATION OF REDOX PARAMETERS IN RAT LIVER INDUCED BY FLAXSEED OIL	
	 A. Todorović, I. Pavlović, S. Pejić, J. Miletić Vukajlović, F. Veljković, J. Filipović Tričković, A. Valenta Šobot, J. Martinović, I. Guševac Stojanović, Z. Stojanović and D. Drakulić 	
PC5	COMPARISON OF EXTRACTION KINETICS OF PHENOLIC COMPOUNDS DURING SPONTANEOUS AND INOCULATED FERMENTATION CV. CABERNET SAUVIGNON N. Lisov, I. Plavšić, U. Čakar, A. Petrović and Lj. Gojković-Bukarica	184
P C6	ANTIBACTERIAL ACTIVITY OF RED WINE N. Đorđević, I. Novaković, N. Todorović Vukotić, V. Tešević and S. B. Pajović	188
PC7	N-ACETYLCYSTEINE AS REGULATOR OF THE CELLULAR HOMEOSTASIS A. Leskovac, M. Čolović, A. Bondžić and S. Petrović	192

TOXIC METALS CONTENT IN MUSCLE TISSUE OF COMMON CARP FROM LOCATIONS NEAR BELGRADE

<u>D. Jovanović</u>¹, R. Marković¹, D. Šefer¹, M. Krstić¹, V. Stanić², D. Perić¹ and M. Ž. Baltić¹

 ¹University of Belgrade, Faculty of Veterinary Medicine, Bulevar Oslobođenja18, 11000 Belgrade, Serbia. (djovanovic@vet.bg.ac.rs)
 ²University of Belgrade, Vinča Institute of Nuclear Sciences-National Institute of the Republic of Serbia, P.O. Box 522, 11351 Belgrade, Serbia

ABSTRACT

The aim of this study was to determine the contamination of some toxic metals (Pb, Cd, Hg and As) in muscle tissue of Common carp (*Cyprinus carpio*) from four different localities (Veliko Blato, Grabovac, Mokri Sebeš and Bečmen) near Belgrade. Generally, the highest average content of lead, cadmium, mercury and arsenic was found in fish muscle tissue from lake Veliko Blato. Concentrations of Pb, Hg and As were under the maximum residual levels prescribed by the European Union (EU) and the maximum allowed concentrations (MAC) for Serbia. In all investigated samples, levels of Cd exceeded MAC values. Data on the finding of toxic metals in fish at the same time speak about the safety of fish as food and can be an indicator of environmental pollution.

INTRODUCTION

In the diet of people, fish occupy a significant place as a biologically valuable food. Due to its nutritional value, which is reflected primarily in easily digestible proteins, as well as due to the high content of ω -3 polyunsaturated fatty acids (PUFA), fish meat is a highly valuable food that is important for proper nutrition and health protection for all categories of people [1]. However, fish, like other foods, can sometimes endanger the health of consumers. Potential foods, including fish, can contain chemical compounds that can harm human health. Imbalances in industrial development and inadequate environmental protection measures lead to an increasing presence of toxic metals in the environment [2]. As a consequence, the pollution of ecosystems, *i.e.* water, sediments and sludge, has increased, which directly affects the quality of aquaculture products. It is assumed that a direct transfer of pollutants from sediment to aquatic organisms is the main route, *i.e.* the way in which pollutants are transferred to many aquatic species, and thus to fish. In this way, fish are significantly susceptible to chemical contamination by ubiquitous pollutants such as toxic metals, which are further accumulated in their tissues [3]. The high content of toxic metals in fish can reduce the positive effect of taking fish and they are associated with serious adverse effects on the health of children and adults [4].

The aim of this paper is to determine the content of toxic metals in the muscle tissue of the Common carp caught from around Belgrade and to determine whether the fish is safe as a food for human consumption, but also to determine the state of the ecosystem and the level of pollution.

EXPERIMENTAL

For this study, seven fish samples were taken from each locality (Veliko Blato, Grabovac, Mokri Sebeš and Bečmen) near Belgrade. The samples were caught by professional fishermen at the end of 2018. The locations of sampling sites are shown in Figure 1.

Figure 1. Map of fish sampling sites.

In order to determine toxic metals in 28 samples of muscle tissue of Common carp (*Cyprinus carpio*), all individuals were identified to species level. Fish samples were quickly frozen and stored at -20 °C. The samples were defrosted in a laboratory at room temperature and mechanically homogenized. For the determination of toxic metals, fish muscle portions of 1 ± 0.001 g were weighed out. Fish samples were digested using a microwave closed system MW 3000 (Anton Paar, Graz, Austria) with a mixture of HNO₃-H₂O₂ (1:1 v/v). The content of Pb and Cd was determined by atomic absorption spectrometer (Perkin Elmer Analyst 700, USA) using graphite furnace (GFAAS-800). According to the manufacturer's instructions, various modifiers were used for the determination of Pb (primary ammonium phosphate) and Cd (mixture of

magnesium nitrate and palladium chloride). Determination of Hg was analyzed with cold vapour techniques (CVAAS) using a hydride system (MHS 15) after reduction by NaBH₄ and As was measured as volatile hydrides (HGAAS) after treatment with NaBH₄ (MHS 15). All collected samples were analyzed in duplicate, and the results are expressed as mean \pm standard deviation.

RESULTS AND DISCUSSION

Toxic metals among environmental pollutants have a particularly important place. The content of toxic metals in fish muscle is given in Table 1. The concentrations in fish meat (*i.e.*, muscle samples) were compared with the maximum allowed concentrations (MAC) in fish meat for the utilization in the human diet, as established by the European Union [5] and the Official Gazette of the Republic of Serbia [6]. According to the legislation [5, 6], the MAC for Pb, Cd, Hg and As are 0.30, 0.05, 0.50 and 2.0 mg kg⁻¹ w/w, respectively.

Locations	Toxic metals			
	Pb	Cd	Hg	As
Veliko Blato	0.038 ^{ABC} ±0.003	$0.077^{A} \pm 0.004$	0.413 ^A ±0.012	0.397 ^{AB} ±0.013
Grabovac	0.030 ^A ±0.004	0.067±0.010	0.385±0.022	0.337 ^A ±0.021
Mokri Sebeš	0.031 ^B ±0.005	0.063 ^A ±0.003	0.332 ^A ±0.015	0.370±0.004
Bečmen	$0.032^{C} \pm 0.006$	0.067 ± 0.007	0.375±0.012	$0.278^B{\pm}0.004$
Legend: Same letters A, B, $C - p < 0.01$				

Table 1. Average content (mg kg⁻¹; $\overline{X} \pm Sd$) of toxic metals in the muscle tissue of the Common carp.

The obtained results of Pb showed the least variation in absolute values in relation to all other tested toxic metals and ranged from 0.030 ± 0.004 mg kg⁻¹ (Grabovac) to 0.038 ± 0.003 mg kg⁻¹ (Veliko Blato). The lower results of Pb content (0.0189 - 0.0301 mg kg⁻¹) in relation to ours were found in the muscle tissue of omnivorous fish in fishpond near Belgrade [7]. In the location of the Danube near Belgrade, the results of Pb in muscle tissue of Common carp were similar and ranged from 0.030 mg kg⁻¹ to 0.040 mg kg⁻¹ [8]. Compared to our results, a higher lead content (0.95 - 1.30 mg kg⁻¹) was observed in the muscle tissue of Common carp caught from Buško Blato, a lake in Bosnia and Herzegovina [9]. Increased Pb levels in the environment are most often derived

from metallurgical combiners and such high levels indicate that the living world in lakes can be a good indicator of the state of the environment. All obtained results of Pb in muscle tissue of Common carp are significantly below the maximum allowed values of 0.30 mg kg^{-1} [5, 6].

The highest content of Cd was determined in the Common carp caught from the lake Veliko Blato and was significantly (p < 0.01) higher, from location Mokri Sebeš. All obtained results in muscle tissue of Common carp are above the maximum allowed values of 0.050 mg kg⁻¹ [5, 6]. Almost identical results (0.058 to 0.067 mg kg⁻¹) to our were determined in the muscle tissue of omnivorous fish species in fishponds around Belgrade [7]. Also, similar values of Cd ranged from 0.051 to 0.057 mg kg⁻¹ were found in the muscle tissue of Prussian carp caught from the river Danube near Belgrade [8]. As in recent years was probably enlarged use of Cd in industrial processes, which has resulted in an increased concentration of this toxic metal in the environment [10]. On the other hand, the obtained results indicate that this may be the current increased concentration of this element, and it would be useful to introduce monitoring the level of Cd in fish and rivers around Belgrade.

In the tested samples, determined Hg contents showed a slight variation. The smallest content $(0.332\pm0.015 \text{ mg kg}^{-1})$ was found in the muscle tissue of the Common carp peaked from Mokri Sebeš which were significantly (p < 0.01) lower in relation to the highest results $(0.413 \pm 0.012 \text{ mg kg}^{-1})$ found in samples taken from Lake Veliko Blato. In the region of Belgrade, different values of Hg in the muscle tissue of the fish were found in the near-term. Lower mercury content $(0.077 - 0.095 \text{ mg kg}^{-1})$ compared to our results was confirmed in the muscle tissue of omnivorous fish (Prussian carp) from the Danube upstream from Belgrade [11]. Recorded values were in the range of 0.387 mg kg⁻¹ to 0.485 mg kg⁻¹ and the Hg content was close to the MAC prescribed by the Rules [5, 6]. This can be interpreted as the ability of Hg to concentrate in fish flesh. The regulation of the mercury in the fish and its detoxification is such that the content of Hg in the fish grows mainly with age so that the meat of older fish tends to accumulate larger amounts of Hg.

The highest concentrations of As were found in the muscle tissue of Common carp from lake Veliko Blato and were significantly (p < 0.01) higher than the results of fish samples from the lake Grabovac and Bečmen. Lower content of the As was determined in the muscle tissue of the Common carp ($0.139 \pm 0.006 \text{ mg kg}^{-1}$) in the Danube [8]. On the other hand, the muscle tissue of Common carp from a fishpond near Belgrade contains an approximate level of As (0.252 to 0.378 mg kg^{-1}) compared to our results [7]. Arsenic in water is mostly due to industrial plants, natural deposits in the country, and the use of artificial fertilizers and insecticides [12]. In all the examined samples of

Common carp muscle tissue from the region near Belgrade, established values did not exceed 2 mg kg⁻¹, prescribed by Rules [5, 6].

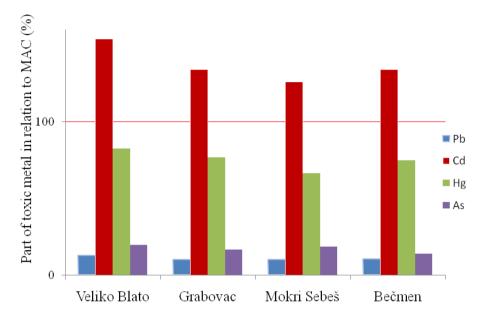


Figure 2. Toxic metal content in relation to the maximum allowed concentration.

The highest concentration of all examined toxic metals in relation to MAC was recorded for cadmium, which is above the legal limit. Cadmium concentrations in samples of Common carp were 26% (Mokri Sebeš), 34% (Grabovac and Bečmen) and 54% (Veliko Blato) above the MAC (Figure 2). The second most represented metal in relation to MAC was mercury, but it did not exceed the allowable value (66.4 - 82.6% in MAC), while the part of As and Pb in MAC was below 20%. The obtained results showed that the highest content of all examined toxic metals was recorded at the lake Veliko Blato which is located in the immediate vicinity of the industrial zone. It is obvious that the industry largely contributes to the increased concentration of toxic elements in water and thus in fish.

CONCLUSION

The study of toxic metals in the muscle tissue of the Common carp from locations near Belgrade revealed statistically significant differences in their content. In all tested samples, the content of Pb, Cd, Hg and As was highest in fish caught from lake Veliko Blato. The content of Pb, Hg and As in fish muscle was below the MAC in the Republic of Serbia and EU Regulations. In all examined samples, a higher amount of Cd was recorded than is prescribed by Serbian and European regulations. Higher concentrations of Cd can be explained by anthropological influence, the development of the industry and wastewater discharge. Finally, the results of this study show that it is necessary to introduce control of potential industrial pollutants with continuous monitoring of aquatic ecosystems.

Acknowledgements

The study was supported by the Ministry of Education, Science and Technological Development of the Republic of Serbia (Contract number 451-03-9/2021-14/200143).

REFERENCES

[1] K.S. Sidhu, Regulatory Toxicology and Pharmacology, 2003, 38, 3, 336–344.

[2] G. Kosior, A. Samecka-Cymerman, A. Brudzinska-Kosior, Bulletin of Environmental Contamination and Toxicology, 2018, 101, 479–485.

[3] D. Jovanović, V. Teodorović, R. Marković, M. Krstić, J. Ćirić, M.Ž. Baltić, B. Baltić, D. Šefer, Meat Technology, 2019, 60, **2**, 121-127.

[4] K. Yoshizawa, E.B. Rimm, J.S. Morris, V.L. Spate, C.C. Hsieh, D. Spiegelman, M.J. Stampfer, W.C. Willet, New England Journal of Medicine, 2002, 347, 1755–1760.

[5] European Commission Regulation, Official Journal of the European Union, Commission Regulation No. 1881/2006/EC.

[6] Official Gazette of RS, no. 29/2014, 37/2014 and 132/2020.

[7] J. Janjić, J. Ivanović, R. Marković, M. Starčević, M. Bošković, V. Đorđević, M. Baltić, Journal of Agricultural Science and Technology, 2015, **5**, 429–436.

[8] D. Jovanović, R. Marković, V. Teodorović, D. Šefer, M. Krstić, S. Radulović, J. Ivanović Ćirić, J. Janjić, M.Ž. Baltić, Environmental science and pollution research, 2017, 24, **12**, 11383-11391.

[9] E. Has-Schön, I. Bogut, R. Vukovic, D. Galovic, A. Bogut, J. Horvatic, Chemosphere, 2015, 135, 289–296.

[10] R. Milanov, M. Krstić, R. Marković, D. Jovanović, B. Baltić, J. Ivanović, M. Jovetić, M.Ž. Baltić, Acta Veterinaria-Beograd, 2016, 66, **1**, 89-102.

[11] S. Zrnčić, D. Oraić, M. Ćaleta, Ž. Mihaljević, D. Zanella, N. Bilandžić, Environmental Monitoring and Assessment, 2013, 185, 1189–1198.

[12] M.I. Castro-Gonzaleza, M. Mendez-Armenta, Environmental Toxicology and Pharmacology, 2008, 26, 263–271.