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Abstract: Yersiniosis, one of the leading foodborne infections in the European Union, is caused by
Yersinia enterocolitica. In this study, the antibacterial and antibiofilm effects of cinnamon (Cinnamomum
zeylanicum Nees), clove (Syzygium aromaticum L.), oregano (Origanum vulgare L.), rosemary (Rosmarinus
officinalis L.), thyme (Thymus vulgaris L.), and winter savory (Satureja montana L.) essential oils were
investigated against Y. enterocolitica strains belonging to the bioserotype 4/0:3. Cinnamon essential
oil showed the highest antibacterial activity, with an MIC value 0.09 uL/mL, followed by oregano
and thyme essential oils, with MIC values from 0.09 to 0.18 pL/mL, and from 0.18 to 0.23 uL/mL,
respectively. Thyme essential oil at 0.23 uL/g (MIC) and at 0.46 uL/g (2MIC) significantly (p < 0.05)
reduced the number of Y. enterocolitica by 0.38 log CFU/g and 0.64 log CFU/g, respectively, in minced
pork meat during storage at 4 °C for 4 days. The Y. enterocolitica strains formed biofilms at 15 °C and
37 °C in tryptic soy broth and Luria—Bertani broth, while no biofilms were obtained at 5 °C, and in
meat broth nutrient media. Applying the minimum bactericidal concentrations of cinnamon, clove,
oregano, rosemary, thyme, and winter savory essential oils on preformed biofilms led to significant
reductions being observed in the range from 45.34% to 78.89%. A scanning electron microscopy
assay showed the devastating impact of oregano and thyme essential oils on the morphology of Y.
enterocolitica bacterial cells. In conclusion, the results of this study show that essential oils possess
high anti-Yersinia and antibiofilm effects.

Keywords: Yersinia enterocolitica; cinnamon essential oil; oregano essential oil; thyme essential oil;
anti-Yersinia activity; minced pork meat; biofilm; antibiofilm activity

1. Introduction

Currently, the genus Yersinia consists of 28 species (Y. aldovae, Y. aleksiciae, Y. alsatica,
Y. artesiana, Y. bercovieri, Y. canariae, Y. enterocolitica, Y. entomophaga, Y. frederiksenii, Y. hibernica,
Y. intermedia, Y. kristensenii, Y. massiliensis, Y. mollaretii, Y. nurmii, Y. occitanica, Y. pekkanenii,
Y. pestis, Y. philomiragia, Y. proxima, Y. rochesterensis, Y. pseudotuberculosis, Y. rohdei, Y. ruckeri,
Y. similis, Y. thracica, Y. vastinensis, and Y. wautersii) [1]. Three species of Yersinia are
human pathogens, including Y. pestis, the causative agent of plague, and Y. enterocolitica
and Y. pseudotuberculosis, the enteropathogen species [2,3]. Y. enterocolitica is divided into
six biotypes, and into over 70 serotypes [4,5]. According to pathogenicity, biotype 1A
is non-pathogenic, biotypes 2, 3, 4, and 5 are low-pathogenic, while the biotype 1B is
highly pathogenic [3,6]. This facultative anaerobic, Gram-negative bacterium may cause
human infections with various symptoms, including fever, abdominal pain, diarrhea, ileitis,
pseudoappendicitis, mesenteric lymphadenitis, arthritis, septicemia, and mortality [7,8].
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Y. enterocolitica, the subject of our study, is transmitted to humans as a foodborne or
waterborne pathogen [4,5]. Although yersiniosis occurs after the consumption of various
contaminated food of both animal and plant origin, contaminated pork is the main source
of Y. enterocolitica in European countries [5]. Pigs are considered the main asymptomatic
reservoir of Y. enterocolitica, especially bioserotype 4/0:3 [9]. The prevalence in Europe
is estimated to be up to 93% [10]. The prevalence of Y. enterocolitica in pigs varies world-
wide [11,12], and depends on several factors including the farm management system,
conditions in slaughterhouses, and the detection methodology [13]. During slaughter,
Y. enterocolitica from tonsils and the intestine can contaminate carcasses and work sur-
faces at slaughterhouses. This can lead to the cross-contamination of the meat. A low
number of Y. enterocolitica in minced meat is characterized as a high microbiological risk
factor for consumers [14], because Y. enterocolitica can survive and replicate at refrigerated
temperatures [9].

One of the survival strategies of bacterial pathogens is the ability to form biofilms [15].
In the food industry, biofilms are mainly responsible for microbial contamination. Biofilms
are complex three-dimensional communities of surface-attached bacteria protected by an
extracellular matrix. Here, bacterial cells communicate through a signaling mechanism
known as quorum sensing (QS) [15]. Y. enterocolitica are able to form biofilms through
five stages of activating the QS system [16]. In the first stage, bacterial cells adhere to
a surface. Next, extracellular polymeric substances (EPSs) are made, and bacterial cells
become irreversibly attached. The EPSs form a complex organic polymer matrix which
consists of polysaccharides, proteins, lipids, nucleic acid, and other substances [17]. In
the third stage, the biofilm architecture is formed, and the biofilm becomes mature. The
maximum bacterial cell density is reached at the next stage. After that, the biofilm releases
bacterial cells that can attach and contaminate new surfaces and form new biofilms [15].
Insufficient and ineffective sanitation allows the biofilm to persist on food-contacting
surfaces, presenting a constant source of microbial contamination of food. Contaminated
food may cause foodborne diseases, which are, along with antimicrobial resistance, a
global public health problem [18]. Further, biofilms can damage equipment and cause food
spoilage all leading to increased costs in the food sector [16,19].

Although Y. enterocolitica infection is mainly asymptomatic, antibiotics are often used
as a conventional method of treatment. The World Health Organization suggests the use of
chloramphenicol, gentamicin, cotrimoxazole, tetracyclines, fluoroquinolones, and third-
generation cephalosporins. Yet, antibiotic resistance has been observed [20]. Because of
this, it is important to find an adequate treatment strategy against Y. enterocolitica biofilms,
and against the Y. enterocolitica present on meat.

One of the measures against Y. enterocolitica may be natural volatile liquids, named
as essential oils (EOs). EOs are complex mixtures of secondary metabolites originating
from aromatic and/or medicinal plants with wide biological activities [21]. They are ob-
tained from different parts of aromatic plants (oregano, rosemary, thyme, sage, lavender,
basil, and many others) [22,23], including roots, leaves, flowers, fruits, seeds, by extrac-
tion methods, of which hydrodistillation is the most common [24]. A wide range of EO
biological activities have been thoroughly examined, including antimicrobial, antiviral, an-
tifungal, anticancer, antioxidant, and anti-inflammatory activity [24,25]. The corresponding
mechanisms of action are many, and they have been previously reported [24]. Differ-
ent EOs show strong antibacterial activity against many foodborne pathogens, including
Salmonella Enteritidis, Salmonella Typhimurium, Listeria monocytogenes, Campylobacter jejuni,
Camplylobacter coli, Escherichia coli, Staphylococcus aureus, Bacillus subtilis, Bacillus cereus,
and others [21]. The chemical composition of EOs is responsible for their antimicrobial
properties [25]. According to Durofil et al. [20], there are some promising data about EOs’
activity against Y. enterocolitica. In the last two decades, extensive investigations have
involved EOs of Ocimum basilicum, Origanum vulgare, Rosmarinus officinalis, and Thymus
vulgaris. Articles have shown several minimum inhibitory concentration (MIC) values
of the Cinnamomum zeylanicum (17.5 uL/L, 75 ug/mL), Syzygium aromaticum (8.7 uL/L),
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Origanum vulgare (75 pg/mL, 20 pL./mL, 2.5 pL./mL, 0.6 mg/mL, 4.4 uL./L), Rosmarinus
officinalis (0.075 mg/mL, 20 uL/mL, 8 pg/mL), Thymus vulgaris (1.2 mg/mL, 32 pg/mL,
349 uL/L, <0.2 uL/mL), and Satureja montana (0.32%) EOs against Y. enterocolitica, all
depending on their origin, plant part, chemical composition, and performed assay [20].
However, in addition to in vitro studies, EOs deserve further research in terms of their effect
on Y. enterocolitica.

To the best of our knowledge, no research has examined the reduction in Y. enterocolitica
biofilms by cinnamon (Cinnamomum zeylanicum Nees), clove (Syzygium aromaticum L.),
oregano (Origanum vulgare L.), rosemary (Rosmarinus officinalis L.), thyme (Thymus vulgaris
L.), and winter savory (Satureja montana L.). The novelty of this research lies in the different
approach of measuring the antimicrobial and antibiofilm activity of six commercially
available EOs against Y. enterocolitica 4/0:3. Withal, all Y. enterocolitica strains included
in this research were isolated from a slaughterhouse located in Serbia. Additionally, the
winter savory EO was obtained from organic plants cultivated in Southeast Serbia, making
it a locally available option for the Y. enterocolitica control. The aims of this research were
(I) to determine the antibacterial activity of selected EOs against Y. enterocolitica in minced
pork meat, (II) to determine the ability of Y. enferocolitica strains to form biofilms in different
nutrient media and temperature conditions, and (III) to investigate the influence of the
selected EOs on the formed Y. enterocolitica biofilms.

2. Materials and Methods
2.1. Essential Oils

Essential oils of cinnamon (Cinnamomum zeylanicum Nees, Sri Lanka) (CIEO), clove
(Syzygium aromaticum L., India) (CLEO), oregano (Origanum vulgare L., India) (OREO), rose-
mary (Rosmarinus officinalis L., Spain) (ROEO), thyme (Thymus vulgaris L., India) (THEO),
and winter savory (Satureja montana L., Serbia) (WSEQO) were selected for this experiment.
All EOs were commercially available from Terra Co, Novi Sad, Serbia, and Siempreviva oils,
Ni$, Serbia. For identification of EO compounds, a gas chromatograph GC 7890B coupled
with an MS 5977A mass spectrometer (Agilent Technologies, Santa Clara, CA, USA) was
used, as in the previous study by Vidakovi¢ KneZevic et al. [26].

2.2. Bacterial Strains

Three Y. enterocolitica strains (Y4/1, Y9, and Y14) were previously isolated from pig
tonsils and belonged to the bioserotype 4/0:3 [27]. Until examination, strains were stored
frozen in tryptic soy broth (TSB) (Oxoid, UK) with the addition of 20% glycerol at —80 °C.

2.3. Determination of Minimum Inhibitory Concentration (MIC) and Minimum Bactericidal
Concentration (MBC)

The EOs were prepared in DMSO (Lach-Ner SRO, Prague, Czech Republic). The broth
microdilution method reported by Koci¢-Tanackov et al. [28] was used to determine the
MICs and MBCs of the EOs. Briefly, 100 pL of EO was mixed with 100 uL of Muller-Hinton
broth (Oxoid, Basingstoke, UK) in the first well of a microtiter plate. After that, a 1:1 serial
dilution was made, reaching the concentration 0.23 pL/mL. All wells were filled with 10 pL
Y. enterocolitica suspension (108 CFU/mL). Incubation was maintained at 37 °C for 24 h.
Then, the content of each well was inoculated onto Muller-Hinton agar (Biokar Diagnostic,
Beauvais, France) and incubated at 37 °C for 24 h. The lowest concentrations of EOs that
inhibited the visible growth of Y. enterocolitica were defined as MICs, while the lowest
concentrations of EOs with no growth after subculturing onto Muller-Hinton agar were
defined as MBCs.

2.4. Preparation of Minced Meat

The fresh pork Quadriceps femoris was minced in a sterile grinder with a No. 4 disc,
and portions of 10 g were placed into sterile Petri dishes. The minced pork meat samples
were inoculated with ca. 10*-10° CFU Y. enterocolitica strain Y4/1. Then, the samples
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were treated with MIC and 2MIC values of OREO (0.09 uL/g and 0.18 uL/g), and THEO
(0.23 uL/g and 0.46 uL/g). All samples were homogenized using a sterile glass rod, and
stored in Petri dishes for 4 days at 4 &+ 1 °C.

2.5. Bacterial Enumeration

Y. enterocolitica count was performed by adding all 10 g of minced pork meat sample
into a stomacher bag containing 90 mL sterilized peptone water (Biokar Diagnostics,
Beauvais, France). After homogenization, decimal dilution was performed followed by
spread-plating on CIN agar (Yersinia selective agar base CM0653, with Yersinia Selective
Supplement SR0109, Oxoid, UK), and incubation at 30 = 1 °C for 24 h. The suspect colonies,
small (<1 mm), smooth, with a red center and translucent rim, were further examined
according to the standard method [29].

2.6. Biofilm Formation

The capability of Y. enterocolitica strains to produce biofilms in TSB, meat broth (MB)
(Oxoid, UK), and Luria—Bertani broth (LB) (Oxoid, UK) at three different temperatures,
including 5 °C, 15 °C, and 37 °C for 48 h was tested according to a previously reported
protocol [30]. Briefly, Y. enterocolitica strains were subcultured in TSB overnight at 37 °C, and
then diluted in TSB, MB, and LB at the ratio of 1:40. Aliquots of 200 L were inoculated into
wells of a sterile 96-well microtiter plate with flat bottoms (Sarstedt, Nimbrecht, Germany)
and incubated at different temperatures for 48 h. After incubation, the Y. enterocolitica cells
that did not adhere were discarded, rinsed with physiological saline (3 x 250 uL/well),
and air-dried. Following this, fixation (250 pL/well of 96% ethanol for 20 min), staining
(250 pL of 0.3% crystal violet (Fluka, Sigma-Aldrich, Germany) for 20 min), rinsing (tapped
water), air drying, and recording the optical density at 550 nm (ODss5g) on the ASYS Expert
Plus Microtitration Reader (Biochrom, Cambridge, UK) were performed. All Y. enteroco-
litica strains were classified as non-biofilm formers (OD < ODC), weak biofilm formers
(ODC < OD < (2 x ODCQ)), moderate biofilm formers ((2 x ODC) < OD < (4 x ODC)), or
strong biofilm formers (OD > (4 x ODQC)) [31].

2.7. Reduction in Biofilm

The reduction in biofilms by EOs was performed according to a previously reported
methodology [30]. Following the procedure from Section 2.6, the biofilms of Y. enterocolitica
strains were formed. After discarding and washing non-adherent Y. enterocolitica cells, the
adhered biofilm was treated with an aliquot of 200 pL solution of MBC concentrations
of EOs in TSB for 48 h at 15 °C and 37 °C. As in the biofilm formation procedure, after
washing, the remained biomass was stained with 0.3% crystal violet. ODs5( of remaining
biofilms were measured, and the reductions were calculated following Equation (1):

Biofilm reduction (%) = [(ODgrowTtH conTROL — ODsampre)/ODGrowTtH conTROL] X 100, 1)

2.8. Scanning Electron Microscopy (SEM) Assay

Suspensions of Y. enterocolitica strain Y9 (100 uL) were inoculated on the surfaces of
sterile SS 304 stainless steel coupons (10 x 10 x 1 mm) for 3 h at 37 °C, and placed in a 12-
well plate. Then, the SS 304 stainless steel coupons were rinsed with 3 mL of physiological
saline, treated with 2 mL LB broth (control), MIC of OREO (0.18 uL/mL), and MIC of
THEO (0.45 uL/mL), and incubated at 37 °C for 24 h. After incubation, the SS 304 stainless
steel coupons were rinsed with physiological saline. The fixation was performed using
4% glutaraldehyde at 5 °C overnight. Once again, the SS 304 stainless steel coupons were
rinsed with physiological saline and dehydrated with a series of graded ethanol (30%, 50%,
60%, 70%, 90%, and 96%). The SS 304 stainless steel coupons were air-dried and coated
with gold (Bal-Tec SCD005 Sputter Coater, BAL-TEC AG, Balzers, Liechtenstein) prior to
SEM analysis (JMS SEM 6460 LV, JEOL Ltd., Tokyo, Japan).
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2.9. Statistical Analysis

The research findings are presented as mean + standard deviation (SD). Using statis-
tical software R version 3.2.2 (R Foundation for Statistical Computing, Vienna, Austria),
the outcomes were evaluated with an analysis of variance (ANOVA) test, followed by
a Duncan’s test. The statistical comparison was evaluated at p < 0.05. All assays were
performed in triplicate.

3. Results and Discussion
3.1. Chemical Composition of Essential Oils

The detailed chemical compositions of CIEO, CLEO, OREO, ROEO, THEO, and WSEO
have been reported in a previous study [30]. The main component of CIEO was cinnamalde-
hyde (74.93%), followed by ascabin (9.01%). CLEO and OREO were rich in eugenol (85.14%)
and carvacrol (81.00%), respectively. The main components of ROEO were o-pinene
(28.23%) and borneol (24.87%), followed by a-terpineol (11.86%) and 1,8-cineole (11.54%).
THEO was rich in p-cymene (40.91%) and thymol (40.36%). The main component of WSEO
was carvacrol (50.45%), followed by p-cymene (15.73%) and y-terpinene (11.43%). Usually,
EQOs contain one to three main components at a high concentration, while the others may
be at a significantly lower concentration, even as traces [24]. The chemical composition of
EOs varies quantitatively and qualitatively. These differences are the outcome of the affect
of endogenous and exogenous factors. Endogenous factors include the anatomical and
physiological characteristics of plants, i.e., plant genetics (species, ecotype, chemotype),
plant origin, season, vegetative phase and parts of plants, physiological and biochemical
pathways, degree of development, and metabolic processes of plants. Exogenous factors in-
clude the external environment, i.e., climate and habitat conditions (temperature, humidity,
windiness, soil composition, geographical origin), cultivation conditions, i.e., agrotechni-
cal measures (method and time of harvesting) and techniques applied after harvesting
(methods of drying, extraction, time distillations, and storage conditions) [25,32].

3.2. Antibacterial Effect of Essential Oils

As presented in Figures 1 and 2, the results show that the MICs and MBCs of the EOs
for the Y. enterocolitica strains ranged from 0.09 pL/mL to 1.42 pL./mL, and 0.18 pL/mL to
2.84 uL/mL, respectively. CIEO manifested the strongest antibacterial activity, with an MIC
value of 0.09 uL/mL for all three Y. enterocolitica strains, followed by OREO, with an MIC
value of 0.09 uL./mL for two Y. enterocolitica strains, Y4/1 and Y14. The MIC value for the
Y9 strain was 0.18 uL./mL. The widest range of MICs, from 0.18 uL./mL to 1.42 pL./mL, was
obtained with WSEQO. The antibacterial activity of different EOs, including CIEO, OREO,
ROEO, and THEO, against Y. enterocolitica have been previously reported [9,20]. The MIC
and MBC values of CIEO, CLEO, OREO, ROEO, THEO, and WSEO for Y. enterocolitica
are similar to the values for S. Enteritidis, S. Typhimurium, and L. monocytogenes obtained
using the EOs of same origin [26,30]. According to the review of Durofil et al. [20], which
included results from more than 50 researchers, EOs originating from plants that belong to
the Lamiaceae and Lauracea families possess high activity against Yersinia. This statement is
in accordance with our study, with the fact that oregano, thyme, and winter savory belong
to the Lamiaceae family, while cinnamon belongs to the Lauracea family.

3.3. Antibacterial Effect of OREO and THEO on Y. enterocolitica Inoculated in Minced Pork Meat

As reported in Table 1, the initial population of Y. enterocolitica was between 4.31 log
CFU/g and 4.46 log CFU/g in all the treatments, without a significant difference (p > 0.05).
The OREO at 0.09 uL/g and 0.18 pL/g did not lower the number of Y. enterocolitica in the
minced pork meat during the 4 days of storage at 4 = 1 °C. On the contrary, the THEO
significantly (p < 0.05) lowered the number of Y. enterocolitica in the minced pork meat at
0.23 uL./g and 0.46 uL/g, for 0.38 log CFU/g and 0.64 log CFU/g, respectively. Similar
to the outcomes of our research, the addition of OREO in barbecued chicken meat did
not reduce the number of Y. enterocolitica during 72 h of storage [33]. According to our
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knowledge, this is the first reported research to examine the efficiency of THEO in minced
pork meat against Y. enterocolitica. The reduction in Y. enterocolitica may be due to the
high content of thymol, a phenolic monoterpene able to alter the composition of the fatty
acids of the cell membrane, and violate its integrity, causing the leakage of intracellular
materials [34]. Oregano and thyme are regularly used as spices in meat products, and can
elevate the antibacterial, antioxidant, and sensory properties, and consequently extend the
shelf-life [35]. However, the required amounts of both EOs in food models are much higher
than those obtained in in vitro studies, and can cause negative organoleptic effects [36], with
an emphasis on strong aroma. Food components, such as protein and fat, are able to reduce
the antibacterial effect of EOs [32]. In addition, Y. enterocolitica is able to activate its adaption
mechanisms when exposed to oregano EO to protect itself, including a reduction in energy
consumption for mobility, flagellum formation, and QS to ensure normal physiological
function [37].

1.6
1.4
1.2

0.6

0.4 II I

0.2

. _mmm |.|. I I I

CIEO CLEO OREO ROEO THEO WSEO
HmY4/1 mY9 mYl4

Figure 1. MICs of cinnamon (Cinnamomum zeylanicum Nees) (CIEO), clove (Syzygium aromaticum L.)
(CLEO), oregano (Origanum vulgare L.) (OREO), rosemary (Rosmarinus officinalis L.) (ROEO), thyme
(Thymus vulgaris L.) (THEO), and winter savory (Satureja montana L.) (WSEO) against the three strains
of Y. enterocolitica.

2.5

0.
. “l all= |II |II |I|
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—_
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Figure 2. MBCs of cinnamon (Cinnamomum zeylanicum Nees) (CIEO), clove (Syzygium aromaticum L.)
(CLEO), oregano (Origanum vulgare L.) (OREO), rosemary (Rosmarinus officinalis L.) (ROEO), thyme
(Thymus vulgaris L.) (THEO), and winter savory (Satureja montana L.) (WSEO) against the three strains
of Y. enterocolitica.
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Table 1. Antibacterial effect of oregano (Origanum vulgare L.) (OREO) and thyme (Thymus vulgaris L.)
(THEO) on Y. enterocolitica inoculated in minced pork meat (log CFU/g).

Days
Treatments
0 1 2 3 4
Control 439 +0.11 3¢ 4.55 4 0.27 5.3240.132B 5.49 + 0.20 2B 5.84 4 0.07 24
OREO0.09 uL/g 4.41 4+ 0.07 3P 4.62 4 0.25 3P 5.23 +0.08 2C 5.50 4+ 0.24 2B 5.79 + 0.23 24
OREO0.18 uL/g 4.46 £0.14 3¢ 454 £0.213 5.40 +0.1528 5.51 +0.23 2B 5.75 £ 0.19 A
THEO 0.23 ul./g 4.36 +0.10C 4.60 +0.23 28 532 +0.1234 5.37 +0.19 24 5.46 + 0.15bA
THEO 0.46 uL/g 4.31 +£0.08 3P 4.63 £0.25% 495+ 0268 5.07 + 0.10 PAB 5.20 £ 0.12A

Means within a column followed by different small letters (a, b, c) are statistically significant (p < 0.05) between
the EO concentrations. Means within a row followed by different big letters (A, B, C, D) are statistically significant
(p < 0.05) between the days of storage.

3.4. Formation of Biofilms by Y. enterocolitica

The production of biofilms by Y. enterocolitica strains on the surface of polystyrene
wells with the three different nutrient media (TSB, MB, and LB broth) at three different
temperatures (5 °C, 15 °C, and 37 °C) over 48 h are shown in Table 2. It is well known that
the formation of biofilms is under the influence of the characteristics of bacteria, the surface,
and the environment conditions [22]. In this study, at 5 °C, none of Y. enterocolitica strains
formed a biofilm. The same was noticed with the MB, regardless of the temperature. The Y.
enterocolitica strains were capable of forming weak and moderate biofilms, while no strong
biofilms were observed in this study. The Y4/1 strain formed one moderate and three weak
biofilms. The Y9 strain formed only a moderate biofilm under two different conditions,
while the Y14 strain formed one moderate and two weak biofilms. Similar findings have
been reported previously [38—40]. According to Wang et al. [40] and our results, Y. enterocol-
itica can form biofilms under conditions simulating a pork slaughterhouse. Unlike the MB
used in our study, the MJ (meat juice) was more suitable for biofilm formation compared to
TSB. The biofilm in MJ was more resistant to sanitization treatment, physical washing, and
starvation when compared to the biofilm formed in TSB [40].

Table 2. Production of biofilm by Y. enterocolitica on polystyrene surface under different conditions of
nutrient media and temperatures.

Strains

TSB MB LB

5°C

15°C 37°C 5°C 15°C 37°C 5°C 15°C 37°C

Y4/1 0.102 = 0.008 ©
Y9 0.099 + 0.008 ©
Y14 0.108 + 0.010 ©

0.264 £ 0.060 *
0.411 £ 0.090 **
0.305 £ 0.090 *

0.197 £ 0.089 *
0.382 £ 0.062 **
0.295 £ 0.070 **

0.092 =+ 0.006 ©
0.092 + 0.008 ©
0.097 + 0.009 ©

0.131 £ 0.015 ©
0.133 + 0.008 ©
0.163 + 0.026 ©

0.109 =+ 0.024 ©
0.104 + 0.031 ©
0.113 4 0.016 ©

0.016 =+ 0.004 ©
0.011 =+ 0.005 ©
0.015 + 0.006 ©

0.350 £ 0.055 **
0.138 +0.012 ©
0.254 £ 0.081 *

0.144 £ 0.043 *
0.115 + 0.034 ©
0.115 + 0.028 ©

Values are mean ODs5g £ SD. Biofilm classification: °—non-biofilm-former; *—weak biofilm former; *—moderate
biofilm former. Cut-off values: TSB (5 °C) = 0.150; MB (5 °C) = 0.161; LB (5 °C) = 0.113; TSB (15 °C) = 0.173; MB
(15°C) =0.167; LB (15 °C) = 0.159; TSB (37 °C) = 0.108; MB (37 °C) = 0.133; LB (37 °C) = 0.123.

In our study, only 3 h of adhesion was enough for the Y. enterocolitica cells to attach to
the surface and start forming a biofilm. Other studies have shown that adhesion can be
observed after 6-8 h, while the formation of a mature biofilm takes 48-72 h [41]. The plasmid
for Yersinia virulence (pYV) is essential for the surface properties of Y. enterocolitica [42].
The capability of Y. enterocolitica to produce biofilms contributes to its pathogenicity and
adaptability [43], which increases the risk of contaminating food-contacting surfaces in
processing plants and final products. Y. enterocolitica biofilm formations are more common
at higher temperatures, so keeping the temperature cool may reduce the bacterial adhesion
on food-contacting surfaces and reduce the biofilm formation in production plants.

3.5. Biofilm Reduction

Biofilm reduction was conducted on selected moderate biofilm formers. The MBC
concentrations of EOs reduced the 48 h old Y. enterocolitica biofilms in the range from 45.34%
to 78.89%, as shown in Table 3. To reduce established biofilms, EO must penetrate the
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exopolysaccharide matrix, reach the protected surface-attached bacterial cells, and alter the
QS system. The QS system controls biofilm formation, so the strategy in biofilm reduction
is targeting QS [16].

Table 3. Reduction (%) in Y. enterocolitica biofilms formed at polystyrene surface exposed to cinnamon
(Cinnamomum zeylanicum Nees) (CIEO), clove (Syzygium aromaticum L.) (CLEO), oregano (Origanum
vulgare L.) (OREO), rosemary (Rosmarinus officinalis L.) (ROEO), thyme (Thymus vulgaris L.) (THEO),
and winter savory (Satureja montana L.) (WSEO) essential oils.

Strai Nutrient Media and Essential Oils
rains Temperature CIEO CLEO OREO ROEO THEO WSEO
Y4/1 LB 15°C 66.90 2 73.45 ¢ 72.07 be 71.12 be 72.17 be 70.21 P
Y9 TSB 37 °C 62.94 be 60.65 ab 54.732 67.32 ¢ 57.57 ab 59.62 ab
Y9 TSB 15 °C 78.59 a 76.87 2 78.89 2 78.452 78.14 2 76.42 3
Y14 TSB 37 °C 62.46 b 63.70 b 70.37b 63.70 b 45342 62.51b

Values within a row followed by different letters (a, b, c) are statistically significant (p < 0.05) between the effect
of EOs.

The major components of EOs, such as cinnamaldehyde, eugenol, carvacrol, p-cymene,
and thymol, are responsible for their antibiofilm effects. However, the components of
EOs present in smaller amounts play a significant synergistic role [22]. Former studies
have suggested that low concentrations of cinnamaldehyde (0.078 mg/mL) can repress the
production of Y. enterocolitica biofilm [16]. In a previous study, it was shown that extracts
from 12 edible plants inhibited the biofilm production of Y. enterocolitica [44]. Natural
antibacterial agents cause abnormal expression of a few important genes, including /xS,
8IgC, envZ, ompF, kdpD, and cydB, resulting in the damage of the biofilm [45]. Generally,
planktonic cells are more sensitive to EOs compared with cells protected in biofilms. There-
fore, the strategy to control biofilms in production plants is an important part of food safety.
The antibiofilm mechanisms of EOs are different and are not entirely clear [22], which
can also be concluded from the results of this study. Namely, the achieved reduction in
Y. enterocolitica biofilms varied within the same applied EO. The lowest difference was
observed applying ROEO (14.75%), while the highest difference was observed applying
THEO (32.8%). Differences in biofilm reduction could be explained by the influence of
temperature. Lower reduction rates were observed at 15 °C, compared with 37 °C. The
temperature of 30 °C is the optimal growth temperature for Y. enterocolitica, so the bacterial
cells in the biofilm formed and treated at 37 °C could be stronger and more resistant to
the applied EOs. Additionally, EOs could exhibit different affinities for different surfaces.
Polystyrene has a hydrophobic surface, and attracts EOs more than hydrophilic stainless
steel [22].

3.6. SEM

The SEM assay was performed on the Y. enterocolitica strain Y9. This strain was
chosen because of its ability to form the strongest biofilms compared with the other two
Y. enterocolitica strains. Figure 3 shows SEM micrographs of the untreated Y. enterocolitica
cells, and the Y. enterocolitica cells treated with MIC amounts of OREO (0.18 uL./mL), and
THEO (0.45 uL/mL). The untreated Y. enterocolitica cells have their typical morphological
appearance; a smooth surface and rod-shaped structure [45], while the Y. enterocolitica cells
treated with OREO and THEO showed damage, with deformed shapes, rough surfaces,
and membrane rupture. The EO components, such as carvacrol, p-cymene, and thymol,
act on bacterial cells by various antimicrobial mechanisms, including the attack of the
phospholipid bilayer, disrupting enzyme systems, metabolic pathways, and the genetic
material of bacterial cells, causing structural and functional damages to the bacterial cell
membrane, that eventually lead to cell death [36,46]. Some of the bacteria cells treated
with thymol showed swelling [47]. The bacteria cells treated with carvacrol and thymol
modified the lipid profile, resulting in an increase in saturated C16 and C18 fatty acids,
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and a decrease in unsaturated C18 fatty acids, causing membrane structural alterations
and permeability [48]. Carvacrol has an effect on the proteins of the outer membrane of
Gram-negative bacteria, which allows Gram-negative bacteria to be more resistant to EOs
and their compounds compared to Gram-positive bacteria [47].

-
2B, BEa 1 1 1 X368, 888 B.5mm

Figure 3. SEM micrographs of Y. enterocolitica cells on SS 304 stainless steel coupons: untreated
(A) and treated with oregano (Origanum vulgare L.) essential oil (B) and thyme (Thymus vulgaris L.)
essential oil (C). Magnifications: (A) x20,000, (B) x20,000, (C) x30,000.

4. Conclusions

The prevalence of Y. enterocolitica is high, and as the leading foodborne infection agent,
this pathogen deserves more attention. In vitro studies have shown that the use of EOs may
be an effective treatment against Y. enterocolitica. CIEO, CLEO, OREO, ROEO, THEO, and
WSEO showed high anti-Yersinia effects, with MIC values > 0.09 uL/mL. However, the
fact that only the THEO (MIC and 2MIC) was able to reduce the number of Y. enterocolitica
in minced pork meat during storage at 4 &= 1 °C for 4 days shows the limited practical
application of EOs in food at the concentrations obtained in in vitro studies. This study
also shows the ability of Y. enterocolitica to form biofilms in different conditions, regarding
temperatures and available nutrients. Y. enterocolitica was able to attach to polystyrene and
stainless steel surfaces, and started to form biofilms in just 3 h. The CIEO, CLEO, OREO,
ROEO, THEO, and WSEO were able to reduce the biofilms of Y. enterocolitica strains formed
at 15 °C and 37 °C in TSB and LB broth. The applied EOs reduced the biomass of the
preformed biofilms by up to 78.89%. SEM showed that OREO and THEO influenced the
typical morphological appearance of the Y. enterocolitica cells, causing a deformed shape
and membrane rupture. This is evidence that environmentally friendly EOs may be used
to control foodborne pathogenic biofilms present on food-contacting surfaces made of
polystyrene and stainless steel. However, further research is necessary to find adequate EO
concentrations applicable to food and surfaces in order to control Y. enterocolitica, before
the industrial application of EOs.
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