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Abstract: Sideritis scardica Griseb., Lamiaceae (ironwort, mountain tea), an endemic 

plant of the Balkan Peninsula, has been used in traditional medicine in the treatment of 

antimicrobial infections, gastrointestinal complaints, inflammation and rheumatic 

disorders. This study reports a comparison between conventional (hydrodistillation HD and 

solvent extraction SE) and alternative (supercritical carbon dioxide SC CO2) extraction 

methods regarding the qualitative and quantitative composition of the obtained extracts as 

analyzed by GC and GC-MS techniques and their anitimicrobial activity. Different types of 

extracts were tested, the essential oil EO obtained by HD, EO-CO2 and AO-CO2 obtained 

by SC CO2 at different preasures 10 and 30 MPa, at 40 °C, respectively, and the fractions 

A, B, C and D obtained by successive solvent extraction (SE) A: ethanol, B: diethyl ether, 

C: ethyl acetate and D: n-butanol). While EO was characterized by the presence of the 
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high percentage of oxygenated monoterpenes and sesquiterpenes (30.01 and 25.54%, 

respectively), the rest of the investigated samples were the most abundant in fatty acids and 

their esters and diterpenes (from 16.72 to 71.07% for fatty acids and their esters, and from 

23.30 to 72.76%, for diterpenes). Microbial susceptibility tests revealed the strong to 

moderate activity of all investigated extracts against the tested microorganisms (MIC from 

40 to 2,560 μg/mL). Although differences in the chemical compositions determined by GC 

and GC-MS analysis were established, the displayed antimicrobial activity was similar for 

the all investigated extracts. 

Keywords: Sideritis scardica Griseb.; Lamiaceae (mountain tea); essential oil; 

hydrodistillation; supercritical carbon dioxide extracts; solvent extraction; terpenoids; 

antimicrobial activity; GC and GC-MS analysis 

 

1. Introduction 

The results of numerous preliminary investigations of plants beloning to the genus Sideritis L. have 

revealed plant-derived compounds of particular pharmacological and nutritional interest. Sideritis L. 

(Lamiaceae) includes approximately 150 species of annual and perennial plants distributed mainly in 

the Medirerranean region. This genus is devided into two subgenera, Sideritis and Marrubiastrum, 

formed by the European and Macaronesian species, respectively. So far, different biological activities 

of Sideritis species have been reported: anti-inflammatory, anti-ulcer, analgesic, antimicrobial and 

antifungal [1–5], immunomodulating [6], macrophage NOS-2-expression inhibiting [7], and 

hypoglycemic [4]. Recently, aldose reductase inhibiting activity [8], antiproliferative, anticholinesterase 

and selective estrogen receptor modulator-like effects and cytotoxic properties have also been  

reported [9–12]. The previous studies of Sideritis species reported the presence of flavonoid  

aglycones and glycosides, phenolic acids, di- and triterpenoids, fatty acids, coumarins and iridoid 

glycosides [2,8,10,12–16]. The composition of various Sideritis species essential oils has also been 

studied exhaustively as well [1]. 

The genus Sideritis is represented in Serbia by only one species, S. montana L. [17], but because of 

its pro-oxidant properties this plant has not been used in traditional medicine [18]. S. scardica Griseb. 

(ironwort, mountain tea) is an endemic plant of the Balkan Peninsula belonging to the Empedoclea 

section. Aerial parts of “mountain tea” are traditionally known for their anti-inflammatory,  

anti-microbial, anti-bacterial, anti-rheumatic and gastroprotective properties. S. scardica is used as a 

loosening agent in bronchitis and bronchial asthma, against common cold and lung emphysema, as well. 

With the current trend towards increasing use of traditional medicines, plant-derived agents have 

been attracting much interest as natural alternatives to synthetic compounds. Since the Middle Age, 

essential oils have been widely used in the pharmaceutical, sanitary, cosmetic, agricultural and food 

industries. In recent years, there has been the considerable interest in essential oils extracted from 

various medicinal plants with the goal of discovering their multifunctional properties in addition to 

their classical roles as food additives and/or fragrances. Known properties of essential oils include 

antibacterial, antifungal, antioxidant and anti-inflammatory activities. The most common method of 
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essential oil isolation is hydrodistillation (HD). Although a very simple process, it suffers of many 

drawbacks: thermal degradation, hydrolysis and solubilization in water of some compounds that alter 

the flavor and fragrance profile of many essential oils extracted by this technique. Organic solvent 

extraction (SE) is often used for isolation of active components from plant material in order to preserve 

thermolabile and highly volatile compounds, but it requires the use of organic solvents. Recently clean 

techniques, such as supercritical fluid extraction (SFE) have been developed for extracting not only 

essential oils. but other active component from complex matrices. SFE is a separation technology that 

uses a supercritical fluid as the solvent, carbon dioxide (CO2) being the main supercritical solvent. 

Carbon dioxide (critical conditions = 30.9 °C and 73.8 bar) is cheap, environmentally friendly and 

generally recognized as safe. Supercritical CO2 (SC-CO2) is attractive because of its high diffusivity 

and its easily tunable solvent strength. Another advantage is that CO2 is gaseous at room temperature 

and ordinary pressure, which makes the recovery of analytes very simple and provides solvent-free 

analytes [19]. Besides, SFE using CO2 allows the extraction of termally labile or easily oxidized 

compounds. The main drawback of SC-CO2 is its low polarity, a problem that can be overcome by 

employing polar modifiers (co-solvents) to change the polarity of the supercritical fluid and to increase 

its solvating power towards the analyte of interest. 

Considering the differences between the applied extraction methods, which might reflect primarily 

in enhanced bioavailability of the active principles and the consequent increase of its therapeutic 

properties, the aim of this study was to evaluate the chemical profile and antimicrobial properties of 

conventional and supercritical S. scardica Griseb., Lamiaceae extracts, EO: essential oil obtained by 

hydrodistillation, EO-CO2: low volatile fraction obtained by supercritical carbon dioxide extraction at 

10 MPa and 40 °C, AO-CO2: the fraction obtained by supercritical fluid extraction at higher pressure, 

40 MPa and 40 °C, and fractions obtained by successive solvent extraction: samples A - ethanol,  

B - diethyl ether, C - ethyl acetate and D - n-butanol extracts. The chemical composition of the 

investigated extracts was determined by GC and GC-MS analysis. In addition, the in vitro 

antimicrobial activity of the investigated extracts was assessed against Gram-positive and Gram-

negative bacteria and yeast strains of medicinal relevance applying the broth microdillution method. 

As far as a literature survey ascertained, there have been no reports on the chemical composition or 

antimicrobial activity of SC-CO2 extracts isolated from S. scardica at 10 MPa and 30 MPa at 40 °C. 

Papaefstathiou et al. reported the successful SFE extraction of added value components from  

S. raeseri [20], however, we have not found in the open literature any report regarding the chemical 

composition and antimicrobial activity of SC-CO2 extracts isolated from S. scardica.  

2. Results and Discussion 

The content and chemical profile of the investigated supercritical and conventional S. scardica 

extracts (essential oil, EO obtained by HD, low volatile fraction, sample EO-CO2, obtained by 

supercritical fluid extraction at 10 MPa and 40 °C, the second fraction, sample AO-CO2, obtained by 

supercritical fluid extraction at 30 MPa and 40 °C, extracts A, B, C and D, obtained by successive SE 

were determined by GC and GC-MS analysis to establish the effect of the extraction method on the 

chemical composition (Table 1 and Figure 1) and on the antimicrobial activity of each extract (Table 2).  
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Table 1. Chemical composition of the supercritical (EO-CO2, AO-CO2) and conventional 

(EO, A, B, C, and D) S. scardica investigated extracts. 

No Extraction mode HD SC CO2 SE 

Compound K.I. a EO EO-CO2 AO-CO2 A B C D 

1. α-thujene 925.5 0.30 - - - - - - 

2. thuja-2,4(10)-diene 953.0 - 1.33 - - - - - 

3. sabinene 967.3 0.05 - - - - - - 

4. myrcene 967.4 1.25 0.24 - - - - - 

5. n-Decane 985.5 0.07 - - - - - - 

6. β-phellandrene/limonene 1021.7 0.05 - - - - - - 

7. 1,8-cineole 1023.2 0.08 - - - - - - 

8. γ-terpinene 1052.8 0.11 - - - - - - 

9. isobutyl acetoacetate 1084.9 0.31 - - - - - - 

10. linalool 1095.3 1.53 - - - - - - 

11. β-thujone 1097.8 0.45 - - - - - - 

12. α-thujone 1098.7 0.56 - - - - - - 

13. trans-pinocarveol  1130.8 0.34 - - - - - - 

14. camphor 1134.8 0.88 - - - - - - 

15. trans-verbenol 1138.8 t - - - - - - 

16. iso-menthone 1145.8 1.75 - - - - - - 

17. borneol 1157.7 1.46 - - - - - - 

18. menthol 1165.6 4.90 - - - - - - 

19. terpinen-4-ol 1169.8 0.42 - - - - - - 

20. α-terpineol 1186.2 0.27 - - - - - - 

21. myrtenal 1190.8 0.42 - - - - - - 

22. myrtenol 1191.2 0.64 - - - - - - 

23. trans-dihydrocarvone 1199.5 0.07 - - - - - - 

24. β-cyclocitral 1214.0 0.09 - - - - - - 

25. neoiso-dihydrocarveol 1224.5 0.08 - - - - - - 

26. thymol methyl ether 1228.4 0.19 - - - - - - 

27. pulegone 1233.4 0.80 - - - - - 

- 

- 

- 28. carvacrol methyl ether 1235.5 0.36 - - - - 

29. d-carvone 1242.1 0.37 - - - - - - 

30. piperotone 1250.7 0.27 - - - - - - 

31. (Z)-chrysanthenyl acetate 1257.8 - - - - - 1.63 4.58 

32. isobornyl acetate 1277.5 1.10 - - - - - - 

33. (E)-anethole 1281.4 2.89 - - - - - - 

34. menthyl acetate 1286.4 - - - - - - 

35. thymol 1291.1 1.97 - - - - - - 

36. carvacrol 1300.5 2.05 - - 1.94 0.48 0.82 1.88 

37. (E)-dimetoxy citral 1341.0 - - - 1.62 - - - 

38. 3’-metoxy-acetophenone 1343.0 0.02 - - - - - - 
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Table 1. Cont. 

No Extraction mode HD SC CO2 SE 

Compound K.I. a EO EO-CO2 AO-CO2 A B C D 

39. α-cubebene 1345.0 0.02 - 0.05 - - - - 

40. α-terpenyl acetate 1342.3 0.03 - - - - - - 

41. decanoic acid 1364.0 - - - - - 0.10 5.47 

42. α-copeane 1365.6 0.11 0.34 - - - - - 

43. β-bourbonene 1374.3 0.04 - - - - - - 

44. trans-β-demascenone 1376.9 0.21 - - - - - - 

45. decyl acetate 1407.0 - - - - - 2.66 12.54 

46. α-dihydroionone 1389.0 0.27 - - - - - - 

47. β-funebrene 1395.2 0.30 - - - - - - 

48. trans-β-caryophyllene 1408.0 0.60 1.39 - - - - - 

49. 2,5-dimethyl-p-cymene 1417.4 0.07 - - - - - - 

50. trans-α-bergamotene 1425.9 0.06 - - - - - - 

51. α-humulene 1442.4 0.10 - - - - - - 

52. (E)-β-farnesene 1449.2 0.21 - - - - - - 

53. (2E)-dodecanal 1464.0 0.10 - - - - - - 

54. germacrene D 1470.3 0.52 - - - - - - 

55. (E)-β-ionone 1478.0 1.15 - - - - - - 

56. (E)-muurola-4(14),5-diene 1482.2 0.03 - - - - - - 

57. valencene 1484.8 0.35 - - - - - - 

58. α-muurolene 1490.2 0.33 - - - - - - 

59. β-bisabolene 1499.3 0.19 0.41 - - - - - 

60. χ-cadinene 1503.1 0.13 0.89 - - - - - 

61. 7-epi-α-selinene 1520.0 0.66 0.94 - - - - - 

62. (E)-calamenene 1521.0 0.36 - - - - - - 

63. myristicin 1522.0 5.23 - - - - - - 

64. δ-cadinene 1522.0 0.10 - - - - - - 

65. ether-italicane 1531.1 t - - - - - - 

66. α-calacorene 1532.7 1.31 - - - - - - 

67. β-calacorene 1553.3 1.21 - - - - - - 

68. (E)-nerolidol 1557.1 0.06 - - - - - - 

69. dodecanoic acid 1565.0 - - - 17.05 6.96 25.56 35.78 

70. spathulenol 1577.0 1.97 - - - - - - 

71. caryophyllene oxide 1582.0 4.84 2.44 0.07 - - - - 

72. viridiflorol 1592.0 1.23 - - - - - - 

73. carotol 1593.5 t - - - - - - 

74. ledol 1594.3 0.99 - - - - - - 

75. diepi-α-cedrenepoxide 1607.0 t - - - - - - 

76. humulene epoxide II 1608.0 0.56 - - - - - - 

77. ledene 1613.0 0.32 - - - - - - 

78. (E)-isolongifolanene 1618.8 0.56 - - - - - - 

79. α-colocalene 1622.0 0.14 - - - - - - 

80. muurola-4,10(14)-dien-1-β-ol 1630.0 0.61 0.21 - - - - - 

81. caryophylla-4(12),8(13)-dien-5-β-ol 1639.0 0.51 - - - - - - 
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Table 1. Cont. 

No Extraction mode HD SC CO2 SE 

Compound K.I. a EO EO-CO2 AO-CO2 A B C D 

82. τ-muurolol 1640.6 3.62 - - - - - - 

83. α-muurolol 1645.7 0.19 - - - - - - 

84. α-selin-11-en-4-ol 1658.1 1.65 - - - - - - 

85. (E)-calamenen-10-ol 1668.2 1.45 - - - - - - 

86. valeranone 1674.4 2.15 1.06 - - - - - 

87. cadelene 1675.0 1.51 - - - - - - 

88. α-germacra-4(15),5,10(14)-trien-1-ol 1685.3 1.21 - - - - - - 

89. α-bisabolol 1685.7 0.32 0.27 - - - - - 

90. acorenone 1692.0 0.26 - - - - - - 

91. 2-(E)-tridecanol acetate 1703.0 2.50 0.65 0.19 - - - - 

92. (E)-coniferyl alcohol 1735.6 - - - - - 11.81 18.69 

93. benzyl benzoate 1761.8 0.02 - - - - - - 

94. β-bisabolenal 1768.9 0.22 - - - - - - 

95. β-bisabolenol 1786.1 1.40 0.53 - - - - - 

96. (2Z,6E)-farnesyl acetate 1821.0 - 0.44 - - - - - 

97. cyclopentadecanolide 1826.6 - - - 4.01 0.34 15.35 - 

98. (Z)-lanceol acetate 1858.0 - 0.66 - - - - - 

99. hexadecanol 1878.8 - - - - - 0.63 0.42 

100. (5E,9E)-farnesyl acetone 1907.9 0.45 - 0.12 - - - - 

101. methyl hexadecanoate 1922.0 - - 0.27 - - - - 

102. ent-rosa-5,15-diene 1933.9 0.15 - - - - - - 

103. pimaradiene 1948.8 0.05 1.52 2.84 - - - - 

104. hexadecanoic acid 1966.6 12.92 18.59 43.22 46.57 8.53 29.89 0.38 

105. ethyl hexadecanoate 1992.0 0.20 11.82 - 4.13 1.23 7.64 - 

106. kaur-15-ene 1997.0 1.88 0.55 - - - - - 

107. 13-epi-manool oxide 2009.9 0.62 - - - - - - 

108. manool 2041.7 0.54 - - - - - - 

109. 13-epi-manool 2059.0 0.53 - - - - - - 

110. octadecanol 2077.0 0.21 6.20 1.84 t t - - 

111. methyl linoleate 2095.0 0.01 1.34 0.11 - - - - 

112. methyl oleate 2104.0 - - 0.18 t - - - 

113. linoleic acid 2132.0 0.12 0.71 24.80 - t - - 

114. oleic acid 2141.0 - 0.80 - - - - - 

115. phytol acetate 2170.6 - - 0.46 - - - - 

116. ugandensodial 2190.0 - - - 1.36 - - - 

117. 7α-hydroxy manool 2237.0 0.41 0.61 - - - - - 

118. 3β-sandaracopimardienol 2269.0 0.20 - - t t - - 

119. sandaracopimarinol 2269.0 0.37 1.26 1.26 - - - - 

120. tricosane 2300.0 0.38 0.40 - - t - - 

121. isopimarol 2310.4 0.22 1.49 - - - - - 

122. (E)-ferruginol acetate 2357.0 - 11.73 11.22 8.25 65.47 - - 

123. methyl strictate 2387.0 - 1.70 - - - - - 

124. 9-octadecen-1-ol 2396.4 - 1.05 - - - - - 
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Table 1. Cont. 

No Extraction mode HD SC CO2 SE 

Compound K.I. a EO EO-CO2 AO-CO2 A B C D 

125. (Z)-ferruginol acetate 2406.0 - - - 4.26 1.04 - - 

126. pentacosane 2486.0 0.41 1.23 - - - - - 

127. dihydroxysandaracopimar-

8(14),15-diene b 

2506.0 - 14.89 11.49 10.79 6.25 - - 

128. hexacosane 2600 - t - - - - - 

129. heptacosane 2700.0 1.28 t t - - - - 

130. octacosane 2800.0 - t t - - - - 

131. nonacosane 2900.0 - t - - - - - 

132. triacontane 3000.0 0.08 - - - - - - 

133. dotriacontane 3200.0 0.01 - - - - - - 

Total 89.12 87.69 98.12 99.98 90.30 96.09 79.74 

Monoterpene hydrocarbons 1.83 1.57 - - - - - 

Oxygenated monoterpenes 30.01 - - 3.56 0.48 14.26 25.15 

Sesquiterpene hydrocarbons 8.63 3.97 0.05 - - - - 

Oxygenated sesquiterpenes 25.54 5.61 0.19 - - - - 

Diterpenes 4.97 33.75 26.81 23.30 72.76 - - 

Fatty acids&esters&aldehydes&alcohols 15.96 41.16 71.07 67.75 16.72 66.48 54.59 

Hydrocarbones 2.16 1.63 t - t - - 

Others 0.02 - - 5..37 0.34 15.35 - 
a Kovats index; t = trace (percentage less than 0.01%); b MW 304, the peaks at m/z 121 and 133 supports a 

sandaracopimara-8(14),15-diene diterpene structure and the fragments 286[M − H2O]+ (100), 268 (30) 

indicate hydroxyl groups; Position of OH groups not determined. 

Taking into account that the fraction A was obtained by SE using ethanol as non-selective solvent, 

we performed successive extraction of the A applying solvents with different polarity in order to 

enable the separation of the constituents regarding their polarity. Hence, we obtained extracts B 

(diethyl ether fraction), C (ethyl acetate fraction), and D (n-butanol fraction). 

2.1. Chemical Composition of Investigated Samples 

The constituents were analyzed by GC and GC-MS followed by calculation of Kovatz indices. In 

total, 133 compounds were identified (Table 1) in the investigated samples EO, EO-CO2, AO-CO2, A, 

B, C, and D accounting 89.12, 87.69, 98.12, 99.98, 90.30, 96.09 and 79.74% (respectively).  

In the EO sample, oxygenated monoterpenes were the major constituents, but with significant 

amount of oxygenated sesquiterpenes and fatty acids with their esters, as well (30.01, 25.54 and 

15.96%, respectively). Although monoterpene hydrocarbons were previously reported as the main 

constituents of the essential oil of several Sideritis species, including S. scardica [21], in EO 

monoterpene hydrocarbons compounds represented only 1.83%. According to the previously published 

data, in the Macedonian S. scardica essential oil, the most abundant compound was α-cadinol, whereas 

in the oil of Bulgarian origin the main components were diterpenic compounds and octadecanol (over 

20%) [22]. In our sample, diterpenes constituted a significant percentage; with octadecanol 
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representing only 0.21% in oil. The most abundant compounds were hexadecanoic acid, myristicin, 

menthol, caryophyllene oxide, and -muurolol (12.92, 5.23, 4.90, 4.84, and 3.62%, respectively).  

Significant differences were established between the chemical profiles of the essential oils obtained 

by HD and SC CO2 applying the pressure of 10 MPa and temperature of 40 °C as extraction conditions 

(the samples EO and EO-CO2, respectively). Namely, fatty acids with their esters and diterpenes 

represented the main groups of the compounds in EO-CO2, with 41.16 and 33.75%, respectively 

(Table 1, Figure 1). The main components were hexadecanoic acid, dihydroxyl derivative of 

sandaracopimar-8(14),15-diene, (E)-ferruginol acetate and ethyl hexadecanoate (18.59, 14.89, 11.82 

and 11.73%, respectively).  

Figure 1. Comparative representation of particular groups of compounds (monoterpene 

hydrocarbons, oxygenated monoterpenes, sesquiterpene hydrocarbons, oxygenated 

sesquiterpene, diterpenes, fatty acids&esters&aldehydes&alcohols, hydrocarbons and 

others) in the investigated extracts obtained by hydrodistillation - HD (EO), supercritical 

carbon dioxide extraction - SC CO2 (EO-CO2 and AO-CO2) and successive solvent 

extraction - SE (A, B, C, and D). 
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Table 2. Results of testing the antibacterial activity on Gram-positive, Gram-negative 

bacteria and yeast of the supercritical (EO-CO2, AO-CO2) and conventional (EO, A, B, C, 

and D) S. scardica investigated extracts. 

Strain  MIC VALUES µg/mL 

EO EO-CO2 AO-CO2 A B C D Gentamicin 

Gram-positive bacteria         

Streptococcus pyogenes 1, tonsils swab 1280 640 640 1280 640 1280 1280 ≤4 

Streptococcus pyogenes 2, tonsils swab 1280 640 640 1280 1280 1280 2560 ≤4 

Streptococcus canis, tonsils swab dog 2560 2560 2560 2560 2560 2560 >2560 ≤4 

Moraxella catarrhalis, tonsils swab 1280 2560 2560 1280 1280 1280 2560 ≤4 

Staphylococcus aureus, ATCC 25923 >2560 >2560 >2560 1280 1280 1280 1280 ≤4 

Staphylococcus aureus, CI, tonsils swab >2560 2560 2560 1280 1280 640 1280 ≤4 

MRSA ATCC 43300 >2560 2560 2560 1280 1280 640 640 ≤4 

Corynebacterium pseudotuberculosis, 

tonsils swab 

640 320 320 160 320 80 80 ≤4 

Enterococcus faecalis, tonsils swab 2560 2560 2560 >2560 >2560 >2560 1280 ≤4 

         

Gram-negative bacteria         

Escherichia coli, ATCC 25922 2560 >2560 >2560 2560 >2560 >2560 2560 ≤4 

Escherichia coli, CI, skin swab >2560 >2560 >2560 2560 >2560 >2560 2560 ≤4 

Pseudomonas aeruginosa, tonsils swab 2560 2560 2560 2560 >2560 >2560 2560 ≤4 

Klebsiella pneumoniae, tonsils swab >2560 >2560 >2560 2560 >2560 >2560 2560 ≤4 

Pasteurella multocida tonsils swab, dog 1280 1280 1280 640 640 320 320 ≤4 

Haemophilus sp., nose swab 640 640 640 320 320 40 80 ≤4 

         

Yeast         

Candida albicans, tonsils swab 2560 2560 2560 2560 >2560 >2560 2560 - 

All swabs were taken from humans, except were indicated. CI - clinical isolates. 

The second fraction AO-CO2 obtained by SC CO2 extraction, maintaining the same temperature, 

but increasing the pressure to 30 MPa, was mainly characterized by the presence of fatty acids  

and diterpenes, as well, (71.07 and 26.81%, respectively). The major compounds were hexadecanoic 

and linoleic acids (43.22 and 24.80%, respectively), and diterpenes—the dihydroxy derivative of 

sandaracopimar-8(14),15-diene and (E)-ferruginol acetate (11.49 and 11.22% respectively). Besides, in 

all other investigated extracts fatty acids with their esters remained the major components, with the 

exception of fraction B, the extracts obtained by SE with diethyl ether as non-polar solvent, which was 

abundant in diterpenes, representing more than 70% of the chemical composition analyzed by  

GC-MS. The samples AO-CO2 and A had relatively similar patterns of the constituents fatty acids  

and diterpenes were the most abundant in A, as well, representing 67.75 and 23.3%, respectively. 

Hexadecanoic and dodecanoic acid (46.57 and 17.05%, respectively) and the dihydroxy derivative of 

sandaracopimar-8(14),15-diene, (E)-ferruginol acetate and (Z)-ferruginol acetate (10.79, 8.25 and 

4.26%, respectively) diterpenes were the major components. 

As stated above, fraction B contained mainly diterpenes, which were not detected in the extracts C 

and D. The main components in B were (E)-ferruginol acetate and the dihydroxy derivative of 
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sandaracopimar-8(14),15-diene, (65.47 and 6.25%, respectively). Fractions C and D were the fractions 

abundant in fatty acids and their esters (66.48 and 54.59%, respectively), with differences in the type 

of fatty acids and their esters present in greatest quantity—as determined, hexadecanoic and 

dodecanoic acids were the major components in C (29.89 and 25.56%, respectively), whereas 

dodecanoic acid and decyl acetate (35.78 and 12.54%, respectively) were the most abundant in D. 

Besides, both samples C and D, contained the oxygenated monoterpene (E)-coniferyl alcohol  

in a significant percentage (11.81 and 18.69%, respectively), while the sample C contained 

cyclopentadecanolide (15.35%), as well. The comparative representation of the identified compounds 

in all investigated samples, classified in the different chemical groups, was typified in Figure 1. 

Many studies have been performed on the chemical composition of essential oil from Sideritis 

species using the GC–MS and GC techniques. In spite of fact that the Lamiaceae family is well-known 

because of its essential oil content, Sideritis species cannot be considered rich in essential oil. 

Nevertheless a correlation between the oil yield and the main group of constituents has been 

established the higher the essential oil yield, the higher the monoterpene hydrogencarbon content. The 

large number of studies on essential oils composition in Sideritis can explain the polymorphism among 

the populations and the existence of new species, chemical varieties and hybrids. Several Sideritis 

essential oils are characterized by high contents of monoterpene hydrocarbons with α-pinene, β-pinene, 

sabinene, myrcene or limonene as the main compounds [21,22]. The presence of important 

sesquiterpene hydrocarbons, particularly δ-cadinene and β-caryophyllene, has been usually confirmed. 

Other essential oils are rich in oxygenated sesquiterpenes, such as α-cadinol, bisabolol or muurol-5-en-

4β-ol as the main compounds, and finally diterpene compounds have been found in Sideritis essential 

oils. The presence of diterpenes as volatile compounds has been described in other genus such as 

Cistus, Wollemia, Juniperus and Helichrysum, characterized by what occurs in Sideritis with the 

presence of a large number of these compounds in the aerial part extracts. Turkish endemic species  

S. bilgerana, S. ozturkii and S. cilicica were rich in the monoterpene hydrocarbons α- and β-pinene.  

S. cilicica has been shown to have relatively high content of β-phellandrene [23]. In the group of 

Sideritis species rich in sesquiterpenes the main constituents have been found to be β-caryophyllene,  

D germacrene and calamene (S. curvidens, S. montana). Oxygenated derivatives are not common as 

main constituents in Sideritis species. Oxygenated monoterpenes, alongside with thymol, are 

characteristic consituents in S. romana. Oxygenated sesquiterpenes predominate in essential oils of  

S. phlomoides and S. taurica. The main constituents of S. congesta and S. argyrea essential oil were  

α- and β-pinene, while limonene was the major one in S. perfoliata essential oil. S. condensata 

provided an essential oil with high proportions of β-caryophyllene and α-pinene [24]. S. perfoliata and  

S. dichotoma essential oils are rich in diterpenes [25]. Monoterpene hydrocarbones has also been 

reported as main constituent in Sideritis species growing in Greece, and in some Spanish species, as 

well. In the essential oil of Spanish endemic species S. ibanyezii, sabinene and α-pinene have been 

found as main compounds [26,27]. The same monoterpene hydrocarbons, as well fenchone and cineole 

were the main constituents in the essential oil of S. pusillafrom the Iberian Peninsula [28]. 

According to presented data, the chemical composition of the analyzed samples revealed the 

existence of different patterns in comparison to the chemical profile of S. scardica already investigated 

by other authors [21,22]. Namely, diterpenes and fatty acids and their derivatives represented 

significant groups of compounds in our samples in contrast to others abundant in monoterpene 
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hydrocarbons or oxygenated sesquiterpenes. Besides, in this work the investigated S. scardica essential 

oil obtained by hydrodistillation, contained oxygenated monoterpenes in the highest percentage. 

2.2. Antimicrobial Activity 

In this work, Gram-positive bacteria, Streptococcus pyogenes, Streptococcus canis, Moraxella 

catarrhalis, Staphylococcus aureus, methicillin resistant Staphylococcus aureus, Corynebacterium 

pseudotuberculosis, Enterococcus faecalis, Gram-negative bacteria Escherichia coli, Pseudomonas 

aeruginosa, Klebsiella pneumoniae, Pasteurella multocida and Haemophilus sp., and yeast Candida 

albicans were the tested microorganisms. Pseudomonas aeruginosa is a huge medical and veterinary 

problem with its intrinsic resistance to many antibiotics and disinfectants, and its ability to  

develop resistance to every so called “antipseudomonal antibiotic”, including carbapenems and 

ureidopenicillins [29,30]. Candida albicans infections are usually chronic and hard to treat, especially 

in children because of strong nephrotoxic and hepatotoxic side effects of some antifungals, especially 

ketoconazole [31,32]. On the other hand, staphylococci and streptococci, statistically are the most 

frequent cause of skin infections in humans and animals, whether in hospitals or in the community [32]. 

Unlike streptococci, which are usually susceptible to penicillins, staphylococci are hard to treat due to 

their ability of developing resistance to antibiotics and disinfectants [32,33]. At the same time, 

staphylococci are often the causative agents of secondary skin infections, usually after bites of insects 

or allergies, so, in all this cases antistaphylococcal therapy is needed [31]. The rest of the investigated 

strains only occasionally occur as causative agents of infections, mostly in immunocompromised patients. 

Overall, minimal inhibitory concentration values (MIC values from 40 to ≥2,560 μg/mL) of the 

investigated extracts, presented in Table 2, indicated a strong to a moderate antibacterial activity of the 

investigated S. scardica extracts against the tested microorganisms. Investigated Gram-positive 

bacteria were more susceptible in comparison to investigated Gram-negative bacteria, with the 

exception of Pasteurella multocida and Haemophilus sp. Investigated extracts showed slight 

differences in their antimicrobial activity, but the common feature for all of them was the strongest 

activity against Gram-negative bacteria Pasteurella multocida and Haemophilus sp. and Gram-positive 

bacterium Corynebacterium pseudotuberculosis (MIC values 40–640 μg/mL). The strongest 

antibacterial activity was determined against Haemophylus sp. for the extracts C and D, with obtained 

MIC values of 40 and 80 µg/mL, respectively. The same extracts exhibited strong antimicrobial 

activity against Corynebacterium pseudotuberculosis, with MIC values of 80 µg/mL. Essential oil 

obtained by HD exhibited the strongest activity against Corynebacterium pseudotuberculosis and 

Haemophylus sp. with MIC values of 640 μg/mL, while moderate activity was determined against 

Staphylococcus pyogenes, Moraxella catarrhalis and Pasteurella multocida. Regarding the SC CO2 

extracts (EO-CO2 and AO-CO2), practically all tested strains showed the same susceptibility; with the 

best results being obtained against Corynebacterium pseudotuberculosis (MIC value was 320 µg/mL) 

for the both extracts. All extracts obtained by SE (A, B, C, and D) demonstrated moderately strong or 

strong antibacterial activity against all investigated Gram-positive bacteria, with MIC values from 80 

to 2,560 µg/mL. Interestingly, extracts C and D exhibited moderate activity against MRSA with MIC 

values 640 µg/mL. Investigated Escherichia coli and Klebsiella pneumoniae strains proved to be the 

most resistant to the applied concentration of the all investigated extracts, with MIC ≥ 2,560 µg/mL. 
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All investigated extracts inhibited the growth of Candida albicans and Pseudomonas aeruginosa 

strains at a concentration at 2,560 µg/mL, with the exception of B and C (MIC ≥ 2,560 µg/mL). 

There are several reports on the antimicrobial activity of Sideritis essential oils. The antimicrobial 

activity of S. perfoliata and S. trojana essential oils was tested against Escherichia coli,  

methicillin-resistant Staphylococcus aureus, Enterobacter aerogenes, Salmonella typhimurium, 

Bacillus cereus, Staphylococcus epidermidis and Candida albicans. The antimicrobial assay results 

indicated that E. coli, methicillin-resistant S. aureus, E. aerogenes, B. cereus, and C. albicans were 

moderately inhibited by the oil of S. trojana, but the oil showed strong inhibitory effects against  

S. epidermidis. S. perfoliata oil, on the other hand, was less active against the test microorganisms 

except for C. albicans. The occurrence of a higher content of oxygenated derivatives of mono- and 

sesquiterpenes (20%) in the oil of S. trojana may be responsible for the better antimicrobial  

activity [23,34]. In addition, there are several reports about the antimicrobial activity of essential  

oil from Spanish Sideritis species, S. angustifolia, S. funkiana, S. javalambrensis, S. leucantha,  

S. mugronensis and S. tragoriganum inhibited Gram-positive bacteria, Staphylococcus aureus, 

Mycobacterium phlei and the fungi Candida albicans growth, whereas they did not show any activity 

against Gram-negative bacteria. Similar results were achieved in the investigation of essential oil of  

S. curvidens and S. lanata, which had no effect against any Gram-negative bacteria, but with a 

significant activity on Gram-positive bacteria [35,36].  

On the contrary, essential oils from S. cilicica and S. bilgerana exerted a significant inhibitory 

effect against several Gram-negative (Salmonella typhimurium, Escherichia coli) and Gram-positive 

(Staphylococcus aureus, Bacillus cereus, Staphylococcus epidermidis) bacteria, with a MIC value from 

0.125 to 0.5 mg/mL, as well as against Candida albicans (MIC 0.03 mg/mL). This antibacterial activity 

could be due to the presence of α-pinene and β-pinene as the main constituents of both species [37]. 

Also, S. italica essential oil was investigated because of its antimicrobial activity which has been 

shown to be the higher against Gram-negative than Gram-positive bacteria, especially against 

Pseudomonas aeruginosa responsible for severe opportunistic infections and very often resistant to 

conventional antibiotics [1]. Besides, the shown strong inhibiting activity against Helicobacter pylori 

justified the ethnopharmacological use of S. italica as an antiulcer agent. 

Not only the essential oil, but various Sideritis extracts possess significant antibacterial activity. 

According to the performed study by Sagdic et al. [38], the methanolic extracts of S. ozturkii and  

S. caesarea, had considerable antimicrobial activity. Linearol, foliol, epicandicandiol and siderol 

which were found in the mentioned Sideritis species were investigated for antibacterial activities as 

well and epicandicandiol had the highest antimicrobial activity against E. coli. The acetone and 

methanol extracts of S. tmolea P. H. Davis were tested against standard bacterial strains. As the result 

of the activity studies, it is found that Sideritis species crude acetone and methanol extracts have  

not shown considerable antimicrobial or antituberculous activity [39], but the inhibition of 

clotrimmazole-resistant C. albicans by some Sideritis species from Turkey were reported [40]. As 

well, in vitro studies indicated that a series of ent-manoyl oxides from S. varoi and their synthetically 

obtained derivatives inhibited the growth of Leishmania donovani [41]. 

The observed antimicrobial activity of the investigated extracts in this work might be attributed  

to the presence different types of terpenoids. Besides the established antimicrobial potential of 

monoterpenes, diterpenes have attracted considerable attention recently. Namely, diterpenes 
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(especially pimarane type) have been reported to display important biological activities, including 

antimicrobial activity [42]. Also, the antimicrobial activity might be the results of the various 

compounds present in the investigated extracts, but not identified by the applied analysis techniques. 

There are no data on referential MIC values of plant extracts upon which categorization of 

investigated microorganisms could be done (susceptible or resistant) and antimicrobial potency of 

plant extracts is often estimated by comparing MIC values of plant extracts to MIC values of 

antibiotics. The scientific basis of such practice is unclear and microbiologically and pharmacologically 

this is the wrong principle because of different pharmacokinetics and metabolism of plant extract and 

antibiotics. In other words, higher MIC values of plant extracts do not necessarily mean weak 

antimicrobial potency [43,44]. For the purpose of the determination of MIC values of antibiotics or 

plant extracts, investigated substances first have to be diluted in order to find the lowest concentration 

in which they demonstrate antimicrobial activity [45–47]. Regarding this, in this research, extracts 

were previously diluted as described in Experimental. Dilution has been done by adding 25.6 µL 

(0.0256 mL) of investigated sample in 1 mL of DMSO (with density correction for every extract). The 

measured volume of investigated extracts was very small and from the microbiological point of a view, 

MIC values of 1,280 µg/mL and 2,560 µg/mL might be interpreted as no or weak antimicrobial 

activity [43,48]. Contrary to that, according to Aligiannis et al. [26], the antimicrobial activity of 

investigated essential oils of S. sipyle, S. clandestine and S. raeseri was characterized as strong or 

moderate, with MIC values ranging from 650 to 9,900 µg/mL, being significantly higher in 

comparison to those observed in this work. 

2.3. The Extraction Yields  

The yields of the performed extractions are presented in the Table 3. The results were as expected, 

according to the low selectivity of the polar solvent used for obtaining the sample A. 

Table 3. The yields, calculated as the amount of extract compared to the total mass of solid 

material at the beginning of the extraction process for the supercritical (EO-CO2,  

AO-CO2) and conventional (EO, A, B, C, and D) S. scardica investigated extracts. 

Investigated samples Yield of extraction (%) 

EO 0.03 
EO-CO2 1.04 
AO-CO2 0.63 
A 16.70 
B 0.50 
C 0.20 
D 0.70 

2.4. The Kinetics of SC-CO2 Extraction 

The kinetics of the extraction processes are depicted in Figure 2. The yield is shown as a function of 

the specific SC CO2 consumption. The results indicate that the total CO2 consumption was 1,200 g for 

the first, and 870 g for the second fraction extraction. The kinetics of both experiments was obviously 
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similar. However, the first fraction consists mainly of low volatile components that represent essential 

oil, while the second fraction (defined as nonvolatile) consists mainly of components characterized 

with higher molecular weight. 

Figure 2. Experimental results for supercritical fluid extraction from S. scardica at 10 MPa 

and 40 °C (left), and 30 MPa and 40 °C (right).  
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3. Experimental  

3.1. Plant Material 

Wild growing species Sideritis scardica Griseb., Lamiaceae were collected on Shara Mountain (at 

the foothills of the Ljuboten, at ca. 1300 m) during the time of flowering. Plant material was air dried, 

packed in paper bags and kept in a dark and cool place until analysis. Plant material was verified and 

the voucher specimen of the plant (SS/08) was deposited at Herbarium of Botanical Garden, 

Jevremovac, Belgrade, Serbia. The plant material was milled in a blender for 60 s and immediately 

subjected to hydrodistillation (HD) or supercritical CO2 extraction (SC CO2), and solvent extraction, as 

well. The average particle size of milled herbs was 0.40 mm (used for all performed extractions). 

3.2. Essential Oil Extraction by Hydrodistillation 

Dried, milled herb (50 g) of S. scardica was distilled using 700 mL distilled water according to the 

standard Clevenger method (4 h) and a yellow viscous volatile essential oil with a balsamic odor was 

collected. The obtained essential oil (Sample EO) was kept in a sealed vial at 4 °C. The yield (w/w) of 

essential oil was 0.03% (on a dry weight basis).  

3.3. Supercritical Fluid Extraction  

Extractions with supercritical carbon dioxide (SC CO2) were performed on a laboratory scale 

equipment, in an Autoclave Engineers SCE Screening System with a 150 cm3 extractor vessel 

previously described [49] and shown in Figure 3.  
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Figure 3. Schematic presentation of the autoclave engineers screening system—T: CO2 

storage tank; C: cryostat; LP: high pressure liquid pump; E: extractor vessel;  

S: separator vessel. 

 

Plant material (41.4 g) was milled and sieved. The fraction with an average particle diameter of  

0.4 mm (collected between sieves of 0.2 mm and 0.6 mm) was used for the experiments. Supercritical 

extractions with carbon dioxide were performed fractionally. The pressure and temperature conditions 

for the extraction of the first fraction were 10 MPa and 40 °C respectively, while the SC CO2 flow rate 

was 0.67 kg/h (obtained sample EO-CO2). After the plant material was exhausted, the pressure was 

raised to 30 MPa and the extraction of the second fraction followed. The SC CO2 flow rate was  

0.32 kg/h (obtained sample AO-CO2). Commercial carbon dioxide (99% purity) supplied by Tehnogas 

(Messer-Tehnogas, Serbia) was used for SC CO2, and dichloromethane and alcohol (GC purity, 

Sigma–Aldrich, Germany) was used for dissolution of supercritical extracts prior to GC-FID-MS analyses. 

3.4. Solvent Extraction (SE) 

The shade-dried and powdered aerial parts of S. scardica (200 g) were coarsely extracted using 70% 

(v/v) ethanol. The crude ethanol extract (A) was re-dissolved in distilled water, shaken vigorously and 

successively extracted with 200 mL of diethyl ether, 200 mL ethyl acetate, and 200 mL saturated  

n-butanol in a separating funnel,. The obtained extracts were labelled as the diethyl ether extract, B  

(0.9 g) ethyl acetate extract, C (0.4 g). and n-butanol extract, D (1.5 g), respectively.  

3.5. Gas Chromatography (GC-FID) 

Gas chromatography analysis of the extracts was carried out on a HP-5890 Series II GC apparatus 

[Hewlett-Packard, Waldbronn (Germany)], equipped with a split–splitless injector and automatic 

liquid sampler, attached to a HP-5 column (25 m × 0.32 mm, 0.52 μm film thickness) and fitted with a 

flame ionization detector (FID). Carrier gas flow rate (H2) was 1 mL/min, split ratio 1:30, injector 

temperature was 250 °C, detector temperature 300 °C, while column temperature was linearly 

programmed from 40 to 260 °C (at rate of 4 °C /min), and then kept isothermally at 260 °C for 10 min. 

Solutions of samples in dichloromethane or alcohol were consecutively injected in amount of 1 μL. 

Area percent reports, obtained as result of standard processing of chromatograms, were used as base 

for the quantification analysis. 
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3.6. Gas Chromatography/Mass Spectrometry (GC-MS)  

The same analytical conditions as those mentioned for GC-FID were employed for GC/MS 

analysis, along with a column HP-5MS (30 m × 0.25 mm, 0.25 μm film thickness), using a HP G 

1800C Series II GCD system [Hewlett-Packard, Palo Alto, CA, USA]. Helium was used as carrier gas. 

The transfer line was heated at 260 °C. Mass spectra were acquired in EI mode (70 eV); in the 40–450 

m/z range. An amount of 0.2 μL of sample solution in dichloromethane or alcohol was injected. The 

components of the oil were identified by comparison of their mass spectra to those from the Wiley 275 

and NIST/NBS libraries, using different search engines. Identification of the compounds was achieved 

by comparing their retention indices and mass spectra with those found in the literature [50] and 

supplemented by the Automated Mass Spectral Deconvolution and Identification System software 

(AMDIS ver. 2.1), GC-MS Librairies [51]. The experimental values for retention indices were 

determined by the use of calibrated Automated Mass Spectral Deconvolution and Identification 

System Software (AMDIS ver. 2.1), GC-MS Libraries [51], compared to those from available 

literature (Adams 2007) [50] and used as additional tool to confirm the MS findings. The relative 

proportion of the essential oil constituents were expressed as percentages obtained by peak area 

normaliyation, all relative response factors being taking as one. 

3.7. In Vitro Antimicrobial Activity  

The investigation of the antibacterial activity of investigated samples EO, EO-CO2, AO-CO2, A, 

B, C, and D was performed on Gram-positive and Gram-negative bacterial species. From the group of 

Gram positive microorganisms, Streptococcus pyogenes, Streptococcus canis, Moraxella catarrhalis, 

Staphylococcus aureus, Corynebacterium pseudotuberculosis, and Enterococcus faecalis strains were 

chosen. From the group of Gram-negatives, Klebsiella pneumoniae, Pseudomonas aeruginosa, 

Escherichia coli, Pasteurella multocida and Haemophilus strains were selected. Pathogenic yeasts was 

also included in the investigation and a Candida albicans strain was chosen for that purpose. The 

investigated strains were isolated from skin and tonsils swabs taken from diseased persons and animals 

with infection symptoms, except Staphylococcus aureus ATCC 25923 and the methicillin-resistant 

Staphylococcus aureus referential strains (MRSA ATCC 43300) which were purchased from Becton 

Dickinson, USA. The isolation was made from clinical material delivered to the Microbiology 

Department, Faculty of Veterinary Medicine, Belgrade University.  

Conventional microbiological methods were applied for the purpose of isolation and identification 

and Columbia sheep blood agar (bioMerieux), MacConkey agar (bioMerieux), CNA agar with colistin 

and nalidixic acid (Becton Dickinson) and nutrient broth (BioLab) were used. For the isolation of 

Candida albicans, Sabouraud dextrose agar was used (BioLife). Identification of isolated strains was 

performed with BBL Crystal Gram-positive ID kit, BBL Crystal enteric/nonfermenter ID kit (Becton 

Dickinson), API 32 STAPH, API 20 NE and API 20 C AUX (bioMerieux).  

For the investigation of antibacterial activity and the determination of MIC values of the 

investigated samples, broth microdillution method was applied in accordance with the CLSI 

prescriptions for antimicrobial susceptibility testing [45–47]. For that purpose, Cation adjusted Mueller 

Hinton II broth was used (CAMHB, Becton Dickinson) with the addition of 1.6% bromcresol purple 
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(Merck) in final concentration at 0.2 mL/200 mL for Gram-positives and 1% phenol red (Merck) at  

1 mL/200 mL for Gram-negatives. Bromcresol purple and phenol red were added to obtain bacterial 

growth visibility. Sabouraud dextrose broth (BioLife) was used for yeasts with no indicators added. 

For streptococci, foetal bovine serum (Sigma) was added in CAMHB at final concentration at 5%. 

Dimethyl sulfoxide, (DMSO, Merck) was used as solvent for investigated samples. Investigated 

concentrations of investigated samples were 2560, 1280, 640, 320, 160, 80, 40, 20, 10, 5, 2,5 and 1,25 

expressed in μg/mL. The samples were dissolved in DMSO at 25.600 μg/mL, then 1:10 dilution with 

CAMHB was made. Titration until desired concentrations was performed in microplate wells as 

previously described [45–47]. The final bacterial inoculum density of 5 × 105 CFU/mL was achieved 

by adding 5 μL of 1–2 × 107 CFU/mL suspension of investigated strain in microplate wells with 100 μL 

of previously added CAMHB. Microplates were incubated 18–24 h on 37 °C. For MIC values the 

broth with lowest oil concentration, with no visible bacterial growth, was used.  

4. Conclusions 

The overall aim of this study was to contribute to the global search for bioactive natural products 

and convenient methods for their extraction. Hydrodistillation and solvent extraction are traditional 

techniques to recover compounds from aromatic plants. As an alternative method, supercritical carbon 

dioxide extraction was used and proved to be suitable for obtaining different plant extracts. The 

extraction method influenced the yield of the extraction and chemical composition performed by GC 

and GC-MS techniques of the investigated S. scardica extracts. The chemical profiles of the 

investigated extracts by GC-MS analysis revealed differences regarding the content of different 

compounds group - monoterpene and sesquiterpene hydrocarbons, oxygenated monoterpenes and 

sesquiterpenes, diterpenes, and fatty acids and their esters, as well. As observed differences in 

chemical compositions of investigated extracts were significant, the alternative SC CO2 extractions 

could not replace the conventional ones, regardless of the better yields of the extraction. Considering the 

literature, there were no data regarding the chemical composition of SC-CO2 extracts isolated from  

S. scardica at 10 MPa and 30 MPa at 40 °C, nor for the antimicrobial activity of S. scardica extracts or 

essential oil. The antimicrobial activity was detected at comparable levels for all investigated extracts, 

with obtained MIC values of 40–2,560 μg/mL. The lowest MIC values were detected for the extracts 

obtained by solvent extraction. The extracts obtained by supercritical carbon dioxide extraction 

exhibited more or the same activity against almost all investigated microorganisms in comparison to 

essential oil obtained by hydrodestilliation. In spite of the differences in the methods applied for the 

extraction, and the chemical composition of the investigated S. scardica extracts, as well, antimicrobial 

activity was not significantly influenced, revealing the possibility that the combination of diterpenes 

and fatty acids and their derivatives might be, at least, partly responsible for the shown activity, but the 

presence of other compound not identified by applied techniques should not be ignored. 
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