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To elucidate the spatiotemporal phylodynamics, dispersion and evolutionary processes underlying

the emergence of novel porcine parvovirus 2 (PPV2), PPV3 and PPV4 species, we analysed all

available complete capsid genes, together with ours, obtained in Europe. Bayesian

phylogeography indicates that Romania (PPV2 and PPV4) and Croatia (PPV3) are the most likely

ancestral areas from which PPVs have subsequently spread to other European countries and

regions. The timescale of our reconstruction supported a relatively recent history of the currently

circulating novel PPV species (1920s to 1980s) in the domestic or sylvatic host. While PPV2

strains exhibited a large genetic exchange characterized by significant recombination and gene

flow between distinct regions and hosts, PPV3 and PPV4 showed a diversification reflected by

the accumulation of geographically structured polymorphisms. The RNA-like evolutionary rates

detected inter- and intrahost recombination and the positive selection sites provided evidence

that the PPV2–4 capsid gene plays a prominent role in host adaptation.

Recently, several new members of the subfamily Parvovirinae
have been discovered in animals, particularly in domestic
pigs. The first such novel parvovirus, provisionally desig-
nated porcine parvovirus 2 (PPV2), has been described
worldwide (Hijikata et al., 2001; Wang et al., 2010; Xiao
et al., 2013a). PPV3 (Cheung et al., 2010), initially designated
porcine hokovirus (Lau et al., 2008) and also known as
porcine partetravirus (Tse et al., 2011), porcine PARV4-like
virus (Szelei et al., 2010) and porcine PARV4 (Xiao et al.,
2012), shows a global presence in domestic pigs. Among
newly described parvoviruses of swine, PPV4, a novel
genetically divergent member of the subfamily Parvovirinae
was discovered initially in the USA in porcine circovirus-
associated disease (PCVAD)-affected pigs (Cheung et al.,

2010) and subsequently reported in Asia, Europe and Africa
(Huang et al., 2010; Zhang et al., 2011; Cságola et al., 2012;
Cadar et al., 2013; Ndze et al., 2013).

With little knowledge on their pathogenicity, these emerging
parvoviruses are currently receiving more attention due to
the tentative association with diseases like PCVAD (Xiao
et al., 2012; Li et al., 2013; Opriessnig et al., 2013) or ‘high
fever disease’ (Wang et al., 2010), which highlights the need
to investigate the molecular evolution, epidemiology and
genetic diversity of these novel PPVs in Suidae hosts. The
aim of this study was to reconstruct the phylogeny and
evolution of PPV2–4 on a spatiotemporal scale in order to
detect the driving forces shaping their evolution, and
estimate the time of origin and patterns of geographical
dispersal of the different strains in general and in Europe in
particular. These data will help to fill several gaps in the
understanding of dispersion, evolution and phylodynamics
of these emerging novel porcine parvoviruses.

To detect the presence of PPV2–4 in different regions of
Europe, tissues and serum samples collected (2006–2011)

The GenBank/EMBL/DDBJ accession numbers for the VP gene
sequences of PPV2–4 are KC701291–KC701314, KC687097–
KC687100, KC767891, KC701315–KC701332 and KC701333–
KC701356.

Four supplementary figures and five tables are available with the online
version of this paper.
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from domestic pigs from Croatia (n589), Poland (n5185)
and Serbia (n578) were used in this study. In addition,
Hungarian and Romanian samples from our previous studies
(Cságola et al., 2012; Cadar et al., 2013) were also used. The
detection and amplification of the complete PPV2–4 VP gene
sequences were performed using previously described specific
PCR protocols (Cadar et al., 2011, 2013; Cságola et al., 2012).
We retrieved from GenBank all available PPV2–4 complete
VP gene sequences. Their accession numbers and other
additional information including PPV2–4 sequences of this
study are listed in Table S1 (available in JGV Online).

To reconstruct the evolutionary history of each dataset
(global and European), maximum likelihoods (MLs) using
Treefinder (Jobb et al., 2004) and the Bayesian Markov
chain Monte Carlo (MCMC) method implemented in the
BEAST v1.6.2 package (Drummond & Rambaut, 2007) were

applied. Moreover, we estimated the rate of evolutionary
change (substitutions per site per year), the time to most
recent common ancestor (tMRCA) and Ne.g (i.e. the
effective number of transmission events, Ne, times the
generation time, g, of the pathogen) under a Bayesian
skyline coalescent tree prior (Drummond et al., 2005). The
extent and pattern of geographical structure in PPV2–4 VP
gene phylogenies were assessed using the program BaTS
(Parker et al., 2008).

We used a timescaled phylogeny to reconstruct the PPV2–4
spread patterns using a standard continuous-time Markov
chain process over discrete sampling locations with the
Bayesian stochastic search variable selection (BSSVS)
model, which allows the diffusion rates to be zero with
some positive prior probability (Lemey et al., 2009). The
putative spatiotemporal pattern of PPV2–4 spread in
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Fig. 1. Bayesian MCC trees that summarized global PPV2 (a), PPV3 (b) and PPV4 (c) complete VP gene datasets were
generated using geospatial Bayesian analysis. We coloured branches according to the most probable location state of their
descendent nodes. The location s.p.p. distributions of ancestral nodes corresponding to PPV2–4 are on the left. ML bootstrap
scores (.70 %) and BPP (.90 %) are shown above the branches. Time is reported in the axis below the tree. The BSPs
including ten coalescent interval groups obtained by analysing the PPV2–4 sequences sampled at different times are shown in
the background. The thick dashed line indicates the median estimates, and the light blue area shows the 95 % highest posterior
density (HPD). The x-axis is the timescale in years, and the y-axis is a logarithmic scale of Ne.g (where Ne is the effective
population size and g is the generation time).
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Europe was analysed using the SPREAD (Bielejec et al., 2011)
program.

The selection pressures analyses were performed using the
SLAC, FEL, REL (Kosakovsky Pond & Frost, 2005) and FUBAR

(Murrell et al., 2013) methods of the HyPhy package. In
order to detect both episodic and pervasive positive
selection at the level of individual sites, the mixed effects
model of evolution (Murrell et al., 2012) method was
implemented. We used the automated algorithms con-
tained within the RDP3 program (Martin et al., 2010) to
screen for putative recombination events. The mosaic
structures of any recombinants were also inferred by means
of bootscanning using GARD (Kosakovsky Pond et al.,
2006). The SplitsTree program v4.12.3 (Huson & Bryant,
2006) was also employed to confirm the phylogenetic
relationship of the recombinant samples of each dataset.

Fig. 1 shows the Bayesian MCMC trees, the estimation of
viral population dynamics and the tMRCA of global PPV2–
4 datasets. The root of the PPV2 tree had a tMRCA of 86
years before present (y.b.p.). From this ancestor, three
main clades (A–C) were identified, having tMRCAs of
63, 61 and 65 y.b.p., respectively. The phylogeographic
reconstruction clearly showed that all clades and subclades
had a MRCA location in Romania [state posterior
probability (s.p.p.)50.24] (Fig. 1a). While the root of the
PPV3 tree had a tMRCA of 81 y.b.p., the seven major

clades identified had a mean ranging between 23 and 56

y.b.p. The phylogeographic reconstruction was unable to

identify a single location for the root of the tree of the

PPV3 global dataset, due to almost identical s.p.p. for two

localities (China and UK) (Fig. 1b). The PPV4 phylogeny

showed a more recent tMRCA (30 y.b.p.) in comparison

with the other two PPV species studied (Fig. 1c and Table

1). Five distinct clades were identified, which diverged at

about 8–21 y.b.p. The AI and PS statistics using the

program BaTS indicated that there was very strong
geographical clustering of PPV3 (except in Germany and

Poland) and PPV4 (except in Croatia) strains by country of

origin (P,0.05), reflecting a significant population sub-

division, except for the PPV2 dataset, for which there was
evidence of significant gene flow between distinct regions

(P.0.05) (Table S3).

Fig. 2 illustrates the Bayesian MCC tree for PPV2–4 in

Europe, and the colour of each lineage and internal node

represents its most probable geographical locality. The spatial
reconstruction suggested that PPV2 and PPV4 in Europe

most likely originated in Romania (highest s.p.p. values), but

we could not accurately pinpoint the geographical origin of

PPV3 due to almost identical s.p.p. for two localities
(Romania and Croatia) (Fig. 2b). Thus, investigation of the

diffusion patterns showed a well-supported connection [Bayes

factor (BF) .3) for Croatia using the BF test under BSSVS

analysis (Fig. S3b). Our analysis recognized six, seven and
four main clades corresponding to PPV2, PPV3 and PPV4

European datasets having the root of the tree tMRCA of 71,

45 and 32 y.b.p. (Fig. 2). Bayesian skyline plot (BSP) analysis

of the PPV2 European dataset showed similar Ne.g values and

dynamics as observed for the global dataset (Figs 1a and 2a).
PPV3 dynamics showed an increased growth phase that

started around the mid-1960s, with a plateau from the 1970s

to 1990s associated with a decreased phase, until the mid-

2000s followed by a phase when Ne.g values remained
constant and still persist (Fig. 2b). PPV4 population dynamics

are characterized by an initial constant phase from the 1980s

to 1990s, followed by a decreasing level of Ne.g values towards

the 2000s, continued with a stabilized value persisting until
today (Fig. 2c). The histories of dispersal of PPV2–4 among

European countries reconstructed using the equal rates model

Table 1. Bayesian estimates of evolutionary rates (substutions per site per year) and the times of the most recent common ancestor
(tMRCA) inferred from complete VP genes of global and European novel porcine parvovirus PPV2–4 datasets

Virus datasets Number of

sequences

Date range of

sequences

Clock/demographic

model

Rate Rate 95 % HPD Node age 95 % HPD

(node age)

tMRCA

(year)

PPV2 global 46 2001–2011 UCLN/BSP 3.3861024 1.9761025–

6.6061024

86 37-224 1925

PPV2 Europe 40 2006–2011 UCLN/BSP 4.5961024 3.1461025–

9.7961024

71 40-335 1940

PPV3 global 63 1994–2011 UCLN/BSP 2.5761024 1.6161024–

3.5561024

81 49-122 1930

PPV3 Europe 36 2006–2011 UCLN/BSP 2.4861024 1.1761024–

4.0861024

45 16-119 1967

PPV4 global 44 2006–2011 UCLN/BSP 3.3461024 7.4761025–

5.9761024

30 13-79 1981

PPV4 Europe 34 2006–2011 UCLN/BSP 2.9861024 4.6161025–

5.2761024

32 13-146 1979

UCLN, uncorrelated lognormal distribution of rates; BSP, Bayesian skyline plot.
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are shown in Fig. S2. Fig. S3 shows only those linkages that are

statistically well supported (i.e. non-zero rates supported by a

BF .3). Our reconstruction of discrete ancestral states (Fig.

2) had the higher BPP values for Romania (PPV2, PPV4) and

Croatia (PPV3).

Table S2 shows the prevalence of PPV2–4 infections
detected in this study and previously reported worldwide.
Multiple nucleotide alignments of PPV3 datasets revealed
one codon deletion (position 714) in two strains from
Serbia (13-RS, 18-RS). The overall dN/dS ratios in VPs were
0.134 (PPV2), 0.176 (PPV3) and 0.234 (PPV4), indicating
that most sites are subject to strong purifying selection.
However, positive selection sites were detected in each
parvovirus species under the five implemented algorithms
(Table S5). Evolutionary fingerprints of PPV2–4 VP gene
alignments clearly reflected and supported the presence of
positively selected individual sites and purifying selection
(Fig. S4). The paraphyletic Pro990Ala and Ala1009Val/His
mutations located in the C terminus of the PPV2 VP gene

appeared only in European domestic and sylvatic strains,
while the paraphyletic Ser1010Thr mutation was detected
worldwide. The geographical structure of the Pro233Ser
mutation indicated the presence of this amino acid replace-
ment only in wild boar origin PPV3 VP gene sequences, while
the PPV4 Gln722Pro mutation appeared only in domestic and
sylvatic strains from Romania and domestic strains from
China. Strong recombination signals were detected only in the
PPV2 dataset, and confirmed by GARD and SplitTree network
analysis (Table S4, Fig. S1). Almost all PPV2 strains from the
European dataset exhibited potential recombination events.
These events were detected both within and between clades
and within and between countries, and also between domestic
and sylvatic (wild boars) strains (Table S4).

In this study, we sought to elucidate the possible origin,
spatiotemporal dynamics and factors that shape the
evolution of novel PPV2–4 species in general, and in
Europe especially. Although several distinct clades in the
phylogenetic trees of PPV2–4 were detected, there is so far
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Fig. 2. Bayesian MCC trees summarized for European PPV2 (a), PPV3 (b) and PPV4 (c) complete VP gene datasets were
generated using geospatial Bayesian analysis. Branches are coloured according to the most probable location state of their
descendent nodes. The location s.p.p. distributions of ancestral nodes corresponding to PPV2–4 are on the left. ML bootstrap
scores (.70 %) and BPP (.90 %) are shown above the branches. Time is reported in the axis below the tree. The BSPs,
including ten coalescent interval groups obtained by analysing the PPV2–4 sequences sampled at different times, are shown in
the background. The thick dashed line indicates the median estimates, and the light blue area shows the 95 % HPD. The x-axis
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generation time).
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no available classification methodology for PPV2–4. Very
recently, Xiao et al. (2013b) proposed three new tentatively
designated genera within the subfamily Parvovirinae, from
which the tentative genus PARV4-like included PPV2 and
PPV3, and a currently unnamed novel clade 2 for PPV4.

Our study is the first attempt to reconstruct the
phylodynamics and phylogeography history of PPV2–4
species. Although PPV2–4 have received more attention
only recently, our estimates suggest that they must have
been around at least since the 1920s (PPV2), 1930s (PPV3)
and 1980s (PPV4), respectively, in the domestic or sylvatic
host. Recently, it has been shown that PPV1 originated
approximately 120 years ago, with the main divergence
occurring in the past 20–60 years (Cadar et al., 2012). This
suggests that the novel PPV2–4 and PPV1 have a relatively
recent and similar evolutionary history.

These results suggest the occurrence of interspecies
transmissions of PPV2–4 between domestic and sylvatic
hosts and are supported by our previous study (Cadar et al.,
2013), but they do not allow us to pinpoint the host of
origin for each PPV species, and by which the viruses were
introduced into specific geographical regions. An extended
surveillance, especially in wild boars among these regions,
will be necessary to answer this question. The spread of
PPV2 and PPV4 in Europe indicates Romania as the initial
source of their diffusion. For PPV3, we were unable to
detect the most probable ancestral location due to the
almost identical state probability for two basal localities,
but based on BSSVS analysis, the diffusion patterns showed
well-supported connections (BF .3) for Croatia as the
likely source of PPV3 diffusion in Europe. Although there
is clear evidence of gene flow of PPV2 among countries
within Europe, and worldwide as well, BaTS analysis also
detected strong structuring of the PPV3 and PPV4
phylogeny by country, suggesting that in situ evolution
also plays an important role in the maintenance of these
viruses worldwide. Indeed, few genetic clusters included
viruses isolated from single geographical areas, suggesting
the existence of epidemiological and commercial connec-
tions among different countries.

Evolutionary rates have been calculated for the VP gene of
several ssDNA viruses and range from more than 1.261023

to as low as 9.461025 substitutions per site per year
(Shackelton et al., 2005; Duffy & Holmes, 2008; Hoelzer
et al., 2008; Firth et al., 2009; Streck et al., 2011; Cadar et al.,
2012, 2013). The evolutionary rates of the VP genes of
PPV2–4 (2.57–3.3861024 substitutions per site per year)
fall in the middle of this spectrum and could maintain
evolutionary dynamics of these viruses closer to those of
ssRNA viruses than to those of dsDNA viruses. A larger
sample of viruses from both hosts is needed to confirm
whether the immune escape and tropism shifts are
responsible for the high substitution rates. The overall low
dN/dS ratio in these novel PPVs indicates that most amino
acid residues are subject to purifying selection with adaptive
evolution restricted to specific residues within VP genes. It is

unknown if these mutations are a consequence of the
mechanisms of antigenic escape or further adaptation to the
host, but they may affect the antigenic profile and confer an
evolutionary advantage to the viruses.

It has been shown that parvoviruses are able to emerge
in new hosts (Parrish & Kawaoka, 2005; Shackelton
et al., 2005). Recombination events of PPV2 VP genes,
including the likely intra- and interspecies and within and
between country strain recombinations, are reported in this
study. All lineages included closely related PPV2 variants
from distant locations and different host species together
with the radiation pattern observed for diversification of
PPV2 strains, suggesting that genetic flow has occurred.
Our analysis provides novel data about the spatiotemporal
phylodynamics, dispersion and evolutionary scenario
shaping these emerging PPVs in general and in Europe in
particular, and supports the notion that Romania (PPV2
and PPV4) and Croatia (PPV3) are possible sources of
PPVs that have subsequently spread to other countries of
the continent. While circulating PPV2 strains exhibited a
large genetic exchange characterized by significant gene
flow between distinct regions, PPV3 and PPV4 showed a
diversification of viral lineages reflected by the accumula-
tion of geographically structured polymorphisms. The
present study also provides data on the evolutionary
dynamics of PPVs, serving as a useful substrate for further
studies regarding the effect of specific mutations, geo-
graphical genetic diversity and the possible implication or
association as a co-factor in the development of swine
diseases such as PCVAD.
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We thank Herbák Józsefné for excellent technical assistance.

References

Bielejec, F., Rambaut, A., Suchard, M. A. & Lemey, P. (2011).
SPREAD: spatial phylogenetic reconstruction of evolutionary
dynamics. Bioinformatics 27, 2910–2912.

Cadar, D., Cságola, A., Lorincz, M., Tombácz, K., SpÎnu, M. & Tuboly,
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