

PH S0160-4120(98)00099-3

CONCENTRATION MEASUREMENTS OF ⁷Be AND ¹³⁷Cs IN GROUND LEVEL AIR IN THE BELGRADE CITY AREA

Dragana Todorovic

Environment and Radiation Protection Laboratory, Institute of Nuclear Sciences "Vinca", 11001 Belgrade, Yugoslavia

Dragana Popovic

Department of Physics, Faculty of Veterinary Medicine, Bul. JA 18, 11000 Belgrade, Yugoslavia

Gordana Djuric

Department of Radiology and Radiation Hygiene, Faculty of Veterinary Medicine, Bul. JA 18, 11000 Belgrade, Yugoslavia

EI 9802-115 M (Received 2 February 1998; accepted 20 September 1998)

Concentrations of ⁷Be and ¹³⁷Cs in ground level air in the city area (Belgrade, central Serbia) were determined in the period from 1991-1996. The average monthly concentrations of ⁷Be in ground level air were in the range of 2-7 mBq/m³ with pronounced one or two maxima in summer or early fall and a minimum in winter. The average air concentrations for ¹³⁷Cs were from 0.5-8.5 x 10-5 Bq/m³, with a spread maximum in the spring-summer period and a pronounced maximum during the winter. A general increase in ⁷Be and ¹³⁷Cs concentrations during 1993 was recorded. The maximum seasonal indices were 1.3 for ⁷Be (summers) and 2.7 (late springs and early summers) and 3.4 (winters) for ¹³⁷Cs. No correlation with the amount of precipitation and ¹³⁷Cs concentrations in air was determined, while the washout effect of rainfalls seems to be more closely related with variations in ⁷Be concentrations. ©1999 Elsevier Science Ltd

INTRODUCTION

Long-term measurements of ⁷Be and other cosmogenic and atmospheric radionuclides provide a tool to study large-scale atmospheric processes and to compare the environmental impact of radioactivity from man-made sources with natural ones, while seasonal variations of ¹³⁷Cs concentrations in ground air indicate the migrations from stratosphere to troposphere, and eventually point to the changes in the global ecosystem (Gustafson et al. 1981; Agelao et al. 1984; Baeza et al. 1996; Papastefanou and Joannidou 1995; Rosner et al. 1996).

Continuous monitoring of ⁷Be concentrations in ground level air at middle latitudes in the last decade indicated the average values of ⁷Be concentration to be up to 10 mBq/m³, with a general increase in the ⁷Be concentrations recorded during 1993 (Larsen et al. 1995; Cannizzaro et al. 1995). Variations in the annual mean ⁷Be concentrations in the period were attributed mainly to the changes in the atmospheric production rate, while seasonal maxima of ⁷Be concentrations were considered to be primarily due to the strong stratosphere to troposphere exchanges in summers,

60 D. Todorovic et al.

typical of these latitudes (Todorovic 1997; Durana et al. 1996; Hartwig 1996).

Concentrations of ¹³⁷Cs in ground level air in the same period were of the order of µBq/m³, with one or two maxima, generaly during summers and winters (Larsen et al. 1995; Cannizzaro 1995). Some authors attribute ¹³⁷Cs winter maximums to the inversion weather conditions (Bunzl et al. 1995), while others tend to the conclusion that in the 1990s, the main source of ¹³⁷Cs is surface air resuspension of soil dust from the Chernobyl fallout, while the stratospheric contribution is much less significant (Fresnel et al. 1996). The calculations of the ¹³⁷Cs summer max/min ratio also indicates a slow decrease of stratospheric ¹³⁷Cs originated by Chernobyl (Bunzl 1995; Hartwig 1996).

In Yugoslavia, there are 30 years of data on the monitoring of ¹³⁷Cs concentrations in ground level air, but continuous measurements of ⁷Be concentrations started only a few years ago (Bauman 1967; Todorovic et al. 1996, 1997).

This paper presents data on the concentration measurements of ⁷Be and ¹³⁷Cs in the ground level air at a meteorological station, Usek, in the region of the Institute Vinca in the Belgrade City area, in the period from 1991-1996. Measurements were performed within a project investigating stratosphere to troposphere migration and exchange processes (Todorovic 1997).

MATERIALS AND METHOD

Air samples were collected daily at the meteorological station Usek, 2 km from the Institute "Vinca" in the direction of wind towards the city (Belgrade, central Serbia). Samples were collected on filter paper (diameter 15 cm, filter relative efficiency for freely deposited dust 80%) using constant flow rate samplers (average air flow 20 m³/h, average daily air volume 600 m³) on a collector site placed 1 m above the ground. Filters were changed daily. Daily samples were ashed at temperatures below 400°C to improve the detection efficiency and minimize the minimum detectable concentrations. A monthly composite sample consisting of about 30 daily filters was formed in planchets (average volume 15 x 10³ m³).

The activities of ⁷Be and ¹³⁷Cs in air (Bq/m³) were determined on an HPGe detector (vertical, coaxial type, ORTEC, relative efficiency 23%) by standard gamma spectrometry. The detector was placed in a shielding cage (45 x 45 x 45 cm) of Pb bricks (width 10 cm) with layers of Cu (3 mm) and Fe (6 cm) on the inner side.

Energy calibration was performed with a set of standard point sources (CEFFRET d, etalon gamma ECGS-2, Sacle, France) containing ¹³³Ba, ⁵⁷Co, ⁶⁰Co, and ¹³⁷Cs (mean activity 10²Bq, overall uncertainty 3%). Geometric efficiency was determined by a reference aerosol sample (ZND 1989).

Counting time intervals ranged from 150 000 - 250 000 s. The background spectrum (integral mean counts 1,7 imp/s) was recorded regularly immediately after or before the sample counting. The total standard error of the method (calculated as the sum of relative errors in geometric efficiency estimation, photo peak counts estimation, sample volume determination, etc.) was estimated below 15%.

Minimum detectable concentrations (derived from the lower limit of detection defined as LLD = $k^2 \pm 2LC$, where k is a coefficient of normal distribution corresponding to confidence level 95% and LC is the critical level depending on the background photo peak counts) for 137 Cs and 7 Be were 1.8 μ Bq/m³ and 50 μ Bq/m³, respectively.

The data were statistically analysed on an IBM/PS2 with the SPECTRAN-AT programme.

Precipitation data for the period were obtained from the Department of Meteorology, Institute of Nuclear Sciences "Vinca" (DM-INS Reports 1991-1996).

RESULTS AND DISCUSSION

The average monthly concentrations of ¹³⁷Cs and ⁷Be in ground level air in the Belgrade City area in the period from 1991-1996 are presented in Fig. 1 and Fig. 2, respectively. The average monthly precipitation values for the same period are presented in Fig. 3. The standard error of the method was less than 15%.

The average monthly ⁷Be concentrations in ground level air in the period were in the range 2-7 mBg/m³, with pronounced one or two maxima in summer or early fall and a minimum in winter. The overall average concentration (± standard deviation) for the whole period was 4.04 ± 1.65 mBq/m³. The data correspond with values measured on the middle latitudes reported in literature. Also, an increase of about 20% in the ⁷Be concentration was recorded in 1993. The average concentration of ¹³⁷Cs in ground level air in the same period was in the range 0.5-8.5 x 10-5 Bq/m³, with the overall average concentration (± standard deviation) for the whole period of $(2.46 \pm 1.04) \times 10^{-5} \text{ Bg/m}^3$. A pattern with a maximum in the spring-summer period and another pronounced maximum during winter was observed.

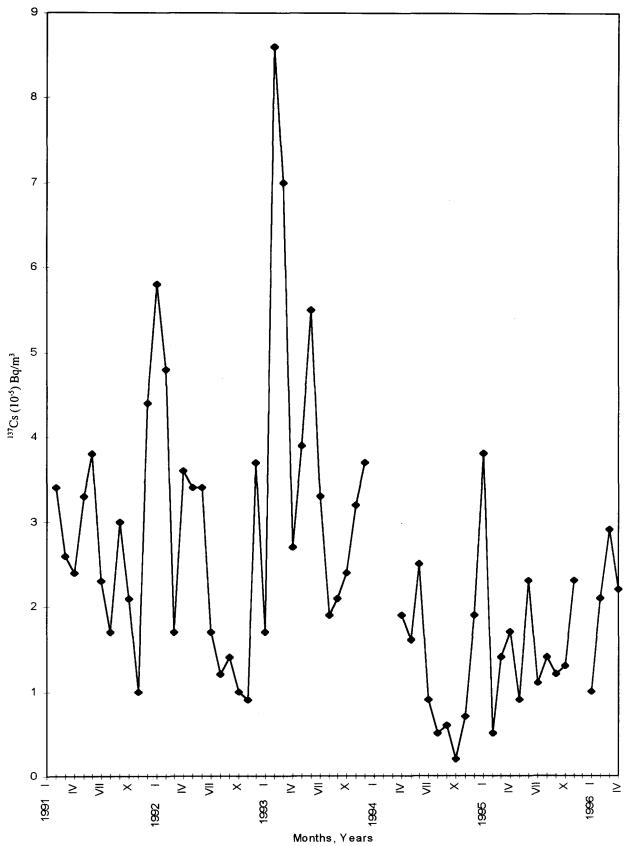


Fig. 1. Average monthly ¹³⁷Cs concentrations in ground level air in the Belgrade City area from 1991-1996.

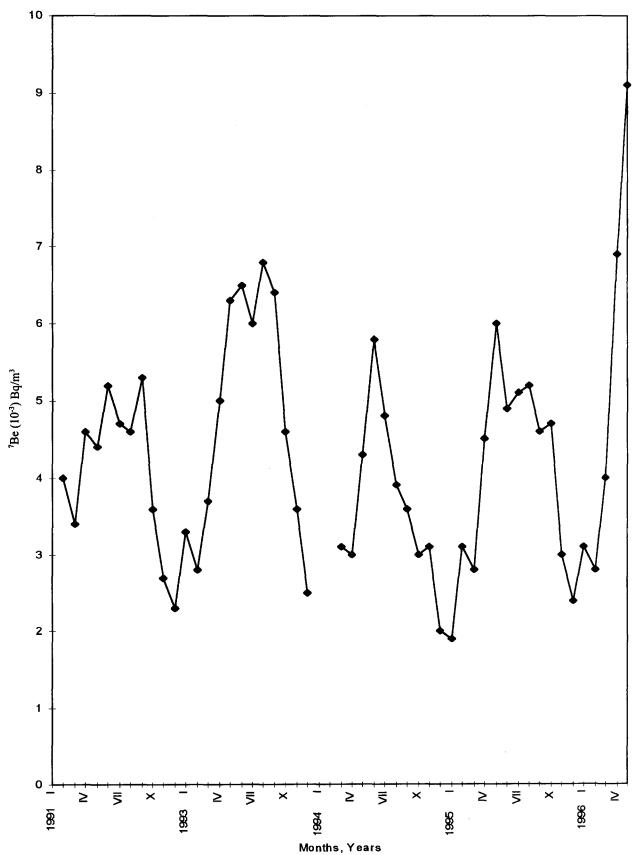


Fig. 2. Average monthly ⁷Be concentrations in ground level air in the Belgrade City area from 1991-1996.

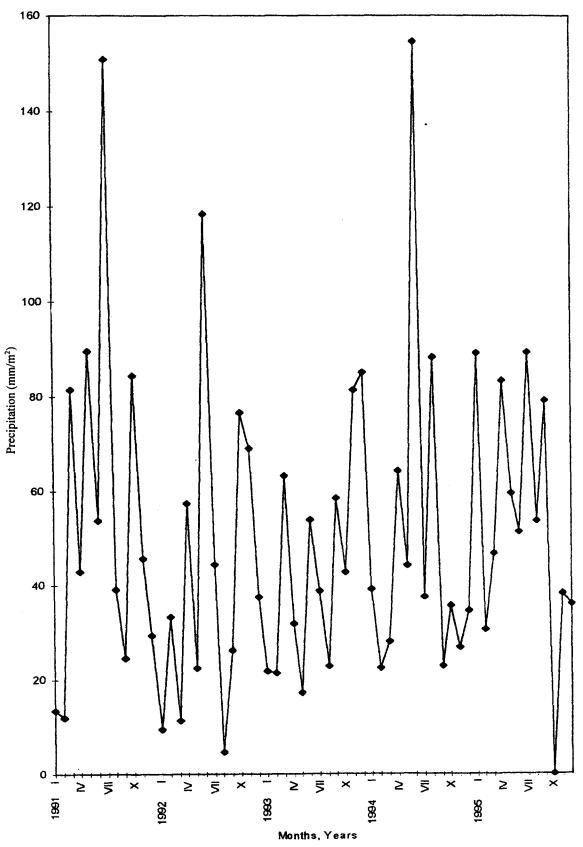


Fig. 3. Average monthly precipitation values in the Belgrade City area from 1991-1996.

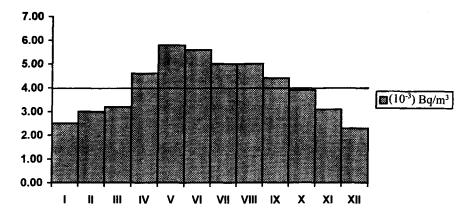


Fig. 4. Histogram of the means of the average monthly ⁷Be concentrations in the period 1991-1996 (the horizontal line is the overall mean for the period).

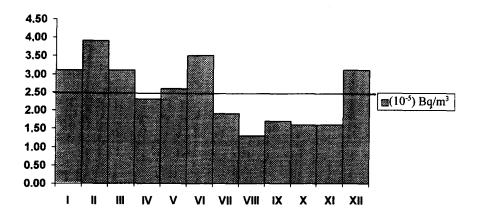


Fig. 5. Histogram of the means of the average monthly ¹³⁷Cs concentrations in the period 1991-1996 (the horizontal line is the overall mean for the period).

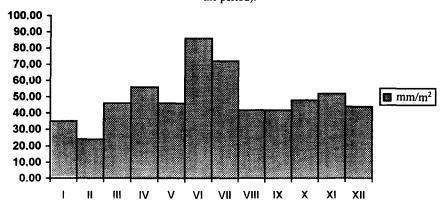


Fig. 6. Histogram of the means of the average monthly amounts of precipitation in the period 1991-1996.

To provide statistical evidence for the observed seasonal trends in ⁷Be and ¹³⁷Cs concentrations, the means of the average monthly concentrations for the period, the seasonal indices, the average quarterly seasonal indices for the period, and the maximum/ minimum ratios were calculated.

The means of the average monthly concentrations of ⁷Be and ¹³⁷Cs in the ground level air in the period 1991-1996 are presented in Figs. 4 and 5, respectively. The means of the average monthly precipitation values are presented in Fig. 6 for comparison. The standard deviation for the calculated means was less than 20%.

	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
⁷ Be	0.6	0.7	0.8	1.0	1.4	1.4	1.2	1.2	1.1	1.0	0.8	0.6
¹³⁷ Cs	1.3	1.6	1.3	0.9	1.1	1.4	0.8	0.5	0.7	0.7	0.7	1.3

Table 1. Seasonal indices for ⁷Be and ¹³⁷Cs from 1991-1996.

Table 2. The average quarterly seasonal indices, 1991-1996.

Season	Winter	Spring	Summer	Fall
⁷ Be	0.63	1.07	1.27	0.97
¹³⁷ Cs	1.40	1.10	0.90	0.76
Precipitation	0.60	0.90	1.24	0.82

The spring to fall periods of increased ⁷Be concentrations and the winter periods of decreased ⁷Be concentrations are clearly recognized. The lowest concentrations were obtained in December and the highest in May-June, with a steeper increase during late spring and a slower decrease in late fall and winter.

The highest concentrations of ¹³⁷Cs were obtained in winter periods when agricultural activities in the surrounding fields induced local surface dust resuspension effects, while maxima in June-July could be attributed to air exchange weather conditions. Seasonal variations of ¹³⁷Cs are less uniform and more dependent on unusual meteorological conditions in the period (high precipitation in the summers of 1991, 1992, and 1994).

The seasonal variations of ⁷Be and ¹³⁷Cs air concentrations could also be analyzed by seasonal indices, defined as ratios of mean monthly concentrations and the overall average concentration in the period. The seasonal indices for ⁷Be and ¹³⁷Cs are presented in Table 1, while quarterly (winter: December, January, and February; spring: March, April, and May; fall: September, October, and November; summer: June, July, and August) seasonal indices for ⁷Be, ¹³⁷Cs, and the amount of precipitation are presented in Table 2.

Analysis of the seasonal indices data confirmed the seasonal variation pattern for both radionuclides and the maximum/minimum concentrations.

No correlation between the ¹³⁷Cs concentrations and the amount of precipitation was obtained. The washout effect of rainfalls seems to be more closely related to the variations in ⁷Be ground air concentrations, but the correlation is still poor (coefficient of correlation r<0.5). The migration from stratosphere to troposphere is likely to play a crucial role. Also, there was no correlation between the ⁷Be and ¹³⁷Cs concentrations.

The max/min ratios (ratios of maximum to minimum concentrations in the year) for ⁷Be and ¹³⁷Cs in summers and winters are presented in Fig. 7 (the missing data were normalized to the overall average concentrations). A relatively stable pattern of ⁷Be behaviour is observed, confirming the relatively constant rate of ⁷Be production. The trend of the ¹³⁷Cs summer max/min ratios points to the constant slow decrease of Chernobyl-originated cesium, while the variations in ¹³⁷Cs winter max/min ratios confirm that this effect can be attributed to local climate phenomena.

REFERENCES

Agelao, G.; Cannizzaro, F.; Greco, G.; Rizzo, S.; Spitale, M.S. Sampling and concentration measurements of ⁷Be and ¹³⁷Cs in ground level air at Palermo. Health Phys. 47: 96-101; 1984.

Baeza, A.; Delrio, L.M.; Jimenez, A.; Miro, C.; Paniagua, J.M.; Rufo, M. Analysis of the temporal evolution of atmospheric ⁷Be as a vector of the behavior of other radionuclides in the atmosphere. J. Radioanal. Nucl. Chem. 207(2): 331-344; 1996.

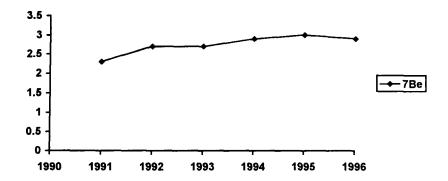
Bauman, A. Measurements and identification of ⁷Be in the fallout. In: Luka, B., ed. Proc. Yug. Radiat. Protect. Assoc. symp. Belgrade, Yugoslavia: Institute for Nuclear Sciences "Vinca"; 1967: 272-276.

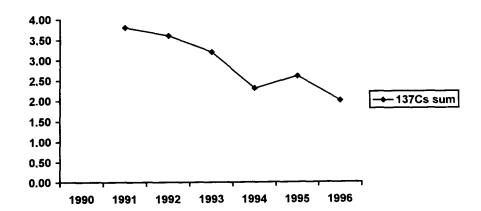
Bunzl, K.; Hotzl, H.; Rosner, G.; Winkler, R. Slow decrease of Chernobyl-derived radiocesium in air and deposition in Bavaria. Naturwissenchaften 82(9): 417-420; 1995.

Cannizzaro, F.; Greco, G.; Raneli, M.; Spitale, M.; Tomarchio, E. Behavior of ⁷Be air concentrations observed during a period of thirteen years and comparison with sun activity. Nucl. Geophys. 9: 597-607: 1995.

DM-INS (Department of Meteorology-Institute of Nuclear Sciences "Vinca") Reports 1991-1996. Belgrade, Yugoslavia: DM-INS.

Durana, L.; Chudy, M.; Masarik, J. Investigation of ⁷Be in the Bratislava atmosphere. J. Radioanal. Nucl. Chem. 207: 345-356; 1996.


Fresnel, E.; Fisher, U.; Kolb, W. High volume air samples: A valuable tool to determine radionuclide concentrations. Strahlenschutz Praxis 4/96: 83-87; 1996.


Gustafson, P.F.; Kerrigan, M.A.; Brar, S.S. Comparison of ⁷Be and ¹³⁷Cs radioactivity in ground level air. Nature 191: 454-456; 1981.

Hartwig, S. Ground level ⁷Be concentrations. Zeitschrift für Naturforschung. Sect. A. S1 (10-11): 1139-1143; 1996.

Larsen, R.J.; Sanderson, C.; Kada, J. EML surface air sampling programme. EML-572. New York, NY: U.S. Energy Department; 1995.

Papastefanou, C.; Joannidou, A. Beryllium-7 aerosols in ambient air. Environ. Int. 22(Supl.1): S125-130; 1995.

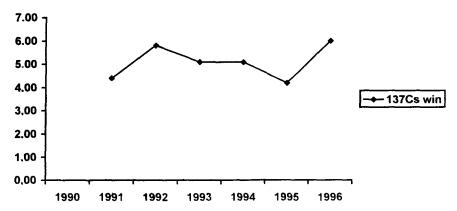


Fig. 7. Max/min ratios for ⁷Be and ¹³⁷Cs in the period 1991-1996.

Rosner, G.; Hotzl, H.; Winkler, R. Continuous wet and dry deposition measurements of ¹³⁷Cs and ⁷Be as indicators of their origin. Appl. Radiat. Isot. 47(9-10): 1135-1139; 1996.

Todorovic, D.; Smiljanic, R.; Manic, S. Thirty years of air radioactivity monitoring in Vinca Institute. Ecologica (Beograd) 10(2): 33-39; 1996.

Todorovic, D. The effect of tropopause height on the content of radioactive debris in surface atmosphere. Environ. Int. 23(6): 815-818; 1997.

Todorovic, D.; Popovic, D.; Djuric, G. Concentration measurements of ⁷Be and ¹³⁷Cs in ground level air. In: Murphy, P.W., ed. Proc. of international symposium on isotope techniques in the study of environmental changes in hydrosphere and atmosphere. IAEA-SM-349/35P. Vienna: IAEA; 1997.

ZND. Protocol on the coordination on a project of atmospheric radioactivity investigation, SEV Intercomparison Programme. Sofia: SEV; 1989.