Battino, Maurizio

Link to this page

Authority KeyName Variants
383c64b4-6945-47c9-9572-37b3cdd597c8
  • Battino, Maurizio (1)
Projects

Author's Bibliography

Oleuropein Attenuates Oxidative Stress in Human Trophoblast Cells

Pirković, Andrea; Vilotić, Aleksandra; Borozan, Sunčica; Nacka-Aleksić, Mirjana; Bojić-Trbojević, Žanka; Jovanović-Krivokuća, Milica; Battino, Maurizio; Giampieri, Francesca; Dekanski, Dragana

(MDPI, 2023)

TY  - JOUR
AU  - Pirković, Andrea
AU  - Vilotić, Aleksandra
AU  - Borozan, Sunčica
AU  - Nacka-Aleksić, Mirjana
AU  - Bojić-Trbojević, Žanka
AU  - Jovanović-Krivokuća, Milica
AU  - Battino, Maurizio
AU  - Giampieri, Francesca
AU  - Dekanski, Dragana
PY  - 2023
UR  - https://vet-erinar.vet.bg.ac.rs/handle/123456789/2539
AB  - Olive-derived bioactive compound oleuropein was evaluated against damage induced by hydrogen peroxide in human trophoblast cells in vitro, by examining the changes in several markers implicated in oxidative stress interactions in the placenta. Trophoblast HTR-8/SVneo cells were preincubated with OLE at 10 and 100 µM and exposed to H2O2, as a model of oxidative stress. Protein and lipid peroxidation, as well as antioxidant enzymes’ activity, were determined spectrophotometrically, and DNA damage was evaluated by comet assay. iNOS protein expression was assessed by Western blot, while the mRNA expression of pro- and anti-apoptotic genes BAX and BCL2 and transcription factor NFE2L2, as well as cytokines IL-6 and TNF α were determined by qPCR. Oleuropein demonstrated cytoprotective effects against H2O2 in trophoblast cells by significantly improving the antioxidant status and preventing protein and lipid damage, as well as reducing the iNOS levels. OLE reduced the mRNA expression of IL-6 and TNF α, however, it did not influence the expression of NFE2L2 or the BAX/BCL2 ratio after H2O2 exposure. Oleuropein per se did not lead to any adverse effects in HTR-8/SVneo cells under the described conditions, confirming its safety in vitro. In conclusion, it significantly attenuated oxidative damage and restored antioxidant functioning, confirming its protective role in trophoblast. © 2023 by the authors.
PB  - MDPI
T2  - Antioxidants
T1  - Oleuropein Attenuates Oxidative Stress in Human Trophoblast Cells
VL  - 12
VL  - 1
SP  - 197
DO  - 10.3390/antiox12010197
ER  - 
@article{
author = "Pirković, Andrea and Vilotić, Aleksandra and Borozan, Sunčica and Nacka-Aleksić, Mirjana and Bojić-Trbojević, Žanka and Jovanović-Krivokuća, Milica and Battino, Maurizio and Giampieri, Francesca and Dekanski, Dragana",
year = "2023",
abstract = "Olive-derived bioactive compound oleuropein was evaluated against damage induced by hydrogen peroxide in human trophoblast cells in vitro, by examining the changes in several markers implicated in oxidative stress interactions in the placenta. Trophoblast HTR-8/SVneo cells were preincubated with OLE at 10 and 100 µM and exposed to H2O2, as a model of oxidative stress. Protein and lipid peroxidation, as well as antioxidant enzymes’ activity, were determined spectrophotometrically, and DNA damage was evaluated by comet assay. iNOS protein expression was assessed by Western blot, while the mRNA expression of pro- and anti-apoptotic genes BAX and BCL2 and transcription factor NFE2L2, as well as cytokines IL-6 and TNF α were determined by qPCR. Oleuropein demonstrated cytoprotective effects against H2O2 in trophoblast cells by significantly improving the antioxidant status and preventing protein and lipid damage, as well as reducing the iNOS levels. OLE reduced the mRNA expression of IL-6 and TNF α, however, it did not influence the expression of NFE2L2 or the BAX/BCL2 ratio after H2O2 exposure. Oleuropein per se did not lead to any adverse effects in HTR-8/SVneo cells under the described conditions, confirming its safety in vitro. In conclusion, it significantly attenuated oxidative damage and restored antioxidant functioning, confirming its protective role in trophoblast. © 2023 by the authors.",
publisher = "MDPI",
journal = "Antioxidants",
title = "Oleuropein Attenuates Oxidative Stress in Human Trophoblast Cells",
volume = "12, 1",
pages = "197",
doi = "10.3390/antiox12010197"
}
Pirković, A., Vilotić, A., Borozan, S., Nacka-Aleksić, M., Bojić-Trbojević, Ž., Jovanović-Krivokuća, M., Battino, M., Giampieri, F.,& Dekanski, D.. (2023). Oleuropein Attenuates Oxidative Stress in Human Trophoblast Cells. in Antioxidants
MDPI., 12, 197.
https://doi.org/10.3390/antiox12010197
Pirković A, Vilotić A, Borozan S, Nacka-Aleksić M, Bojić-Trbojević Ž, Jovanović-Krivokuća M, Battino M, Giampieri F, Dekanski D. Oleuropein Attenuates Oxidative Stress in Human Trophoblast Cells. in Antioxidants. 2023;12:197.
doi:10.3390/antiox12010197 .
Pirković, Andrea, Vilotić, Aleksandra, Borozan, Sunčica, Nacka-Aleksić, Mirjana, Bojić-Trbojević, Žanka, Jovanović-Krivokuća, Milica, Battino, Maurizio, Giampieri, Francesca, Dekanski, Dragana, "Oleuropein Attenuates Oxidative Stress in Human Trophoblast Cells" in Antioxidants, 12 (2023):197,
https://doi.org/10.3390/antiox12010197 . .
5
5